CS8792-CRYPTOGRAPHY AND NETWORK SECURITY

UNIT-I: INTRODUCTION

1.What is meant by Denial of Service [DoS]attack? Is it Active Attack or Passive Attack?[Nov/Dec 2021]

The denial of service prevents or inhibits the normal use or management of communications facilities.

Example

An entity may suppress all messages directed to a particular destination.

Denial of service

* It is an Active Attack

* Active attacks involve some modification of the data stream or the creation of a false stream and
* Denial of Service (DoS) can be category of ActiveAttack.

2. Let message $=$ "Anna", and $k=3$, find the ciphertext using Caesar.[Nov/Dec 2021]
Caesar algorithm
$\mathbf{C}=\mathbf{E}(p, k)=(p+k) \bmod 26$

5.Distinguish between attack and threat?[Nov/Dec 2018]
Threat[2-marks]
A potential for violation of security, because of
(1). Circumstances, (2). Capability, (3). Action or event that break security and cause harm.
Threat is possible that might create Vulnerability.

Attack[2-marks].

It is an intelligent act that is a deliberate attempt to
(1). Avoid security services and (2). Violate the security policy of a system.
6. Calculate the cipher text for the following using one time pad cipher(Perfect secrecy or Vernam Cipher)

Plain Text:ROCK

Keyword:BOTS

Answer

Each new message requires a new key of the same length as the new message. Such a scheme, known as a one-time pad, is unbreakable.
It produces random output that bears no statistical relationship to the plaintext.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Plain Text	$\mathrm{R}(17)$	$\mathrm{O}(14)$	$\mathrm{C}(2)$	$\mathrm{K}(10)$
Keyword	$\mathrm{B}(1)$	$\mathrm{O}(14)$	$\mathrm{T}(19)$	$\mathrm{S}(18)$
Sum (PT+K)	18	28	21	28
If Sum >25 then 26-sum	S	$\mathrm{C}(2)$	V	$\mathrm{C}(2)$

Cipher Text :SCVC

Vernam Cipher

- One-time pad (OTP), also called Vernam-cipher or the perfect cipher, is a crypto algorithm where plaintext is combined with a random key.
- The key is at least as long as the message or data that must be encrypted.
- Each key is used only once, and both sender and receiver must destroy their key after use.
- There should only be two copies of the key: one for the sender and one for the receiver.

Vernam Cipher

1. assign a number to each character of the Plain-Text, like $(a=0, b=1, c=2, \ldots z=25)$. As per given table.

a	b	c	d	e	f	g	h	i	j	k	l	m
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$	$\mathbf{6}$	7	8	9	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
n	o	p	q	r	s	t	u	v	w	x	y	z
$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	23	24	$\mathbf{2 5}$

2. Assign a number to each character of the plain-text and the key according to alphabetical order.

| Plain Text | \mathbf{I} | \mathbf{A} | \mathbf{M} | \mathbf{A} | \mathbf{N} | \mathbf{I} | \mathbf{N} | \mathbf{D} | \mathbf{I} | \mathbf{A} | \mathbf{N} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{8}$ | $\mathbf{0}$ | $\mathbf{1 2}$ | \mathbf{O} | 13 | $\mathbf{8}$ | 13 | $\mathbf{3}$ | $\mathbf{8}$ | $\mathbf{0}$ | $\mathbf{1 3}$ |
| Key | \mathbf{A} | \mathbf{N} | \mathbf{T} | \mathbf{I} | \mathbf{P} | \mathbf{A} | \mathbf{K} | \mathbf{I} | \mathbf{S} | \mathbf{T} | \mathbf{A} |
| | $\mathbf{0}$ | 13 | 19 | 8 | 15 | $\mathbf{0}$ | 10 | 8 | 18 | 19 | $\mathbf{0}$ |

13,Define steganography

Methods of hiding the existence of a message or other data.This is different than cryptography, which hides the meaning of a message but does not hide the message itself.
14. Encrypt the plaintext tobeornottobe using the vigenere cipher for the key value Now.

\mathbf{n}	\mathbf{O}	\mathbf{w}	\mathbf{N}	$\mathbf{0}$	\mathbf{w}	\mathbf{n}	\mathbf{o}	\mathbf{W}	\mathbf{n}	\mathbf{o}	\mathbf{w}	\mathbf{n}
\mathbf{t}	\mathbf{O}	\mathbf{b}	\mathbf{E}	\mathbf{o}	\mathbf{r}	\mathbf{n}	\mathbf{o}	\mathbf{T}	\mathbf{t}	\mathbf{o}	\mathbf{b}	\mathbf{e}
\mathbf{g}	\mathbf{C}	\mathbf{x}	\mathbf{R}	\mathbf{c}	\mathbf{n}	\mathbf{a}	\mathbf{c}	\mathbf{P}	\mathbf{g}	\mathbf{c}	\mathbf{x}	\mathbf{r}

It assures that individuals control what information related to them may be collected and stored.

It also assures that information may be disc by whom and to whom.

2.Integrity [2-marks]

Ensures that only authorized parties are able to modify the stored information and transmitted information.
(i).Data integrity -assures that information and programs are changed only in a specified and authorized manner.

(ii).System integrity:-

Assures that system performs to proposed functions in an undamaged manner. Free

19.What are the two basic functions used in the encryption algorithm?

1.Substitution 2.Transposition

1.Substitution

In which each element in the plaintext is mapped into another element.
2.Transposition

In which elements in the plaintext are rearranged .No information is lost.
20.List the entities that are to be kept secret in conventional encryption techniques?
Secret Key and encryption algorithm

Part B Questions

1.(i)Explain OSI Security Architecture model with neat diagram[Nov /Dec 2016]
 The OSI security architecture focuses on security attacks, mechanisms, and services

Definition of security attacks, mechanisms, and services

Threat and Attack -Definition And Difference

(i)Security Attack

Types
1.Passive Attack 2.Active Attack
1.Active Attack

Definition
Types
(i)Masquerade, (ii)Modification of message (iii) Replay (iv) Denial of service.
1.Passive Attack

Definition
Types

* Release of message contents
* Traffic analysis

Difference between Active Attack and passive Attack
(ii)Describe the various security mechanism

2.Encrypt the following using play fair cipher using the keyword "MONARCHY."
SWARAJ IS MY BIRTH RIGHT" Use X for blank spaces.(Nov/Dec 17)

[^0]```
 * Definiton
 * Example
```


## Drawbacks

Easy to break because the key size is fixed.

```
C=(PT+3)MOD 26
```


## MonaAlphabetic Cipher

* Why Mona alphabetic cipher
* Example
* Difference
* Drawbacks


## $\mathrm{C}=(\mathrm{PT}+\mathrm{K}) \mathrm{MOD} 26$

## 6.Explain the network security model and its importance with a neat block diagram?

```
 Sender Opponent Receiver
```



## Network Security Model

```
* Two Components for providing Network Security Model
- Security related transformation
- Security information
* Trusted Third party
* Responsibility of trusted third party
* Four basic task to design a particular security service
* Network Access Security Model
* Two types of Threats
* Security Mechanisms
- Major Procees of Secuirty Mechanisms
- Gate Keeper
- Variety of internal Controls
 Security attacks
Definition
Crvptosvaphic Atraclis

\section*{Security Services}

8.Demonstrate encryption and decryption process in hill cipher. Consider \(\mathrm{m}=\) "sh" and key \(=\) hill".

\section*{Define Hill Cipher}
* Hill Cipher is polyalphabetic substitution techniques.

\section*{Decryption}

\section*{Step 1}

\section*{\(\mathrm{P}=\mathrm{K}^{-1} \mathrm{C} \bmod 26\)}

\section*{Step 2}

\section*{Now find the multiplicative inverse of the determinant. \\ ie., \(d^{\top}\) ㄹ \(1 \bmod 26\)}

So first find the determinant of the matrix: \(d=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=|a d-b c|\)

To remove the regative sign, add 26 to negative numbers.
So we get \(\left[\begin{array}{cc}6 & -3+26 \\ -3+26 & 2\end{array}\right]=\left[\begin{array}{cc}6 & 23 \\ 23 & 2\end{array}\right]\)
Now multiply this with the multiplicative inverse of determinant.
So \(9 *\left[\begin{array}{cc}6 & 23 \\ 23 & 2\end{array}\right]=\left[\begin{array}{ll}54 & 207 \\ 207 & 18\end{array}\right]\)
Now find its modulo 26.
\[
\text { ie., }=\left[\begin{array}{ll}
2 & 25 \\
25 & 18
\end{array}\right]
\]

10.Encrypt the message "this is an exercise using additive cipher with key =20.Ignore the space between words .Decrypt the message to get the original plaintext.
or
Encrypt the message "this is an exercise" using additive cipher with
key \(=20\). Ignore the space between words. Decrypt the message to get the original plaintext.(6 Marks)

\section*{Answer}

\section*{\(\mathrm{C}=\mathrm{E}(\mathrm{K}, \mathrm{P})=(\mathrm{P}+\mathrm{K}) \bmod 26\)}
Let us assign a numerical equivalent to each letter:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & b & c & d & e & f & g & h & i & j & k & l & m \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline n & o & p & q & r & s & t & u & v & w & x & y & z \\
\hline 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
\hline
\end{tabular}
Original Message: thisisanexercise Key: 20
Now, let's encrypt each letter with numbering and calculations:
2. \(' h\) ' 7) \(+20=27 \% 26=1->\) ' \(b\) '
3. i ' (8) \(+20=28 \% 26=2\)-> 'c'
4. 's' (18) \(+20=38 \% 26=12->\) 'm'
5. \(\quad\) 'i' (8) \(+20=28 \% 26=2\)-> 'c'
6. 's' (18) \(+20=38 \% 26=12\)-> 'm'
'a' (0) \(+20=20 \% 26=20->\) 'u'
8. \(\quad\) ' \('(13)+20=33 \% 26=7\)-> 'h'
9. 'e' (4) \(+20=24 \% 26=24->\) 'y'
10. \(\quad\) 'x' (23) \(+20=43 \% 26=17\)-> 'r'
11. 'e' (4) \(+20=24 \% 26=24->\) ' \(y\) '
12. 'r' (17) \(+20=37 \% 26=11->\) ' 1 '
13. \(\quad\) 'c' (2) \(+20=22 \% 26=22->\) ' \(w\) '
14. 'i' (8) \(+20=28 \% 26=2->\) 'c'
15. \({ }^{\prime} \mathrm{s}\) ' \((18)+20=38 \% 26=12->\) 'm'
16. 'e' (4) \(+20=24 \% 26=24->\) 'y'

Encrypted Message: "nbcmucrhwcmy"
Now, let's decrypt the message by reversing the process:
```

    'n' (13) - 20 = -7 -> 't' (19)
    'b' (1) - 20 = -19 -> 'h' (7)
    'c' (2) - 20 = -18 -> 'i' (8)
    'm' (12) - 20 = -8 -> 's' (18)
    'c' (2) - 20 = -18 -> 'i' (8)
    'm' (12) - 20 = -8 -> 's' (18)
    'u' (20) - 20 = 0 -> 'a' (0)
    'h' (7) - 20 = -13 -> 'n' (13)
    'y' (24) - 20 = 4 -> 'e' (4)
    'r' (17) - 20 = -3 -> 'x' (23)
    'y' (24) - 20 = 4 -> 'e' (4)
        'I' (11) - 20 = -9 -> 'r' (17)
        'w' (22) - 20 = 2 -> 'c' (2)
        'c' (2) - 20 = -18 -> 'i' (8)
        'm' (12) - 20 = -8 -> 's' (18)
        'y' (24) - 20 = 4 -> 'e' (4)
    ```

Decrypted Message: "thisisanexercise"
So, the original plaintext is indeed "this is an exercise."
11.Perform Encyption and decryption using Hill Cipher for the following Message :PEN and Key:ACTIVATED
1. Perform Ereergption and derugption using Will asper for the following Massage: PCN and key: ACTHMED Sol.:
\[
\text { Encryptions: } \begin{aligned}
C & =K P \text { rood ab }
\end{aligned}
\]
\[
\therefore\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 2 & 19 \\
8 & 21 & 0 \\
19 & 4 & 3
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{1} \\
p_{7}
\end{array}\right) \bmod 26
\]
\[
\left.\begin{array}{l}
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 2 & 19 \\
8 & 21 & 0 \\
19 & 4 & 3
\end{array}\right)\left(\begin{array}{c}
5 \\
4 \\
13
\end{array}\right) \bmod 26 \\
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \times 15+2 \times 4+12 \times 13 \\
8 \times 15+21 \times 4+0 \times 13 \\
19 \times 15+4 \times 4+3 \times 13
\end{array}\right) \bmod 26 \\
1 \\
\left(\begin{array}{l}
c_{1} \\
0_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
255 \\
204 \\
340
\end{array}\right) \bmod 26 \\
22 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
v \\
w \\
c
\end{array}\right) .
\]

\[
\begin{aligned}
& =\left(\begin{array}{ccc}
1575 & 1750 & -9975 \\
-600 & -9025 & 3800 \\
-9175 & 950 & -400
\end{array} \bmod ^{26}\right. \\
& K^{-1}=\left(\begin{array}{ccc}
15 & 8 & 9 \\
24 & 23 & 4 \\
3 & 14 & 16
\end{array}\right) \\
& P=k^{\prime \prime} C \bmod 26 \\
& \left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{ccc}
15 & 8 & 9 \\
24 & 23 & 4 \\
3 & 14 & 16
\end{array}\right)\left(\begin{array}{c}
21 \\
22 \\
2
\end{array}\right) \bmod 16 \\
& \left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{l}
15 \times 21+8 \times 22+.9 \times 2 \\
24 \times 21+23 \times 22+4 \times 2 \\
3 \times 21+14 \times 22+16 \times 2
\end{array}\right) \text { mod } 26 \\
& =\left(\begin{array}{ccc}
50 & 9 \\
10 & 18 \\
40 & \bmod 2 b
\end{array}\right) \\
& \left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{c}
15 \\
4 \\
13
\end{array}\right)=\left(\begin{array}{c}
P \\
E^{2} \\
N
\end{array}\right) \\
& \text { P dain tant = PEN }
\end{aligned}
\]

\section*{1.Security Trends}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline High & & & & \multicolumn{4}{|l|}{Intruder Knowledge} & & & & Low \\
\hline 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & & 1998 & & 2000 & 2001 \\
\hline
\end{tabular}
2.Need for Security at Multiple levels

3.Security polices
Four Types of Policies 1.Cryptography and compliance 2.Use of Encryption 3.Managing electronic keys 4.Using and receiving digital signatures
4.Foundation of Modern Cryptography
 Perfect Security
 Information Theory
 Product Crypto Systems
Definition
Steps
(i)Encyprtion/Decryption Rules
(ii)Probabilities of messages
(iii)Probabilities of keys
(iv)Shannon's Theorem
(ii)Information Theory
Entropy
Properties of Entropy
(iii) Product Crypto Systems
Definition
Diagram
5.List out any two di-gram, two tri-gram. Shortly describe the application of di-
 gram and tri-gram in cryptography.(5 Marks)
 Di-grams and Tri-grams:
 Di-grams:
 Example 1: "TH" is a di-gram.
 Example 2: "IN" is another di-gram.
 Tri-grams:
 Example 1: "THE" is a tri-gram.
 Example 2: "AND" is another tri-gram.
 Applications in Cryptography:
 1.Frequency Analysis
 Di-grams and tri-grams are used in frequency analysis, which is a technique in
 cryptanalysis (the study of breaking codes) to decipher encrypted messages. In
 natural languages like English, certain di-grams and tri-grams occur more
 frequently than others. Cryptanalysts can use this information to make educated
 guesses about the substitution patterns used in simple ciphers like the Caesar
 cipher

\section*{2.Text Scoring \\ 2.Text Scoring}
Di-grams and tri-grams are also used in text scoring systems for cryptographic algorithms like the Vigenère cipher. By analyzing the frequencies of di-grams and trigrams in the decrypted text, one can assign a score to different decryption keys. Keys that produce decrypted text with di-grams and tri-grams that closely resemble those found in the expected language (e.g., English) are considered more likely to be the correct key. This helps automated decryption processes.
 algorithms like the Vigenère cipher. By analyzing the frequencies of di-grams and tri-
 grams in the decrypted text, one can assign a score to different decryption keys. Keys
 that produce decrypted text with di-grams and tri-grams that closely resemble those
 correct key. This helps automated decryption processes.

\section*{Triple DES with 3-key}
Although the attacks just described appear impractical, anyone using two key 3DES It uses three stages of DES for encryption and decryption. The 1st, use K1key and 2nd stage use K2 key and 3rd stage k3 key
Three-key 3DES has an effective key length of \(\mathbf{1 6 8}\) bits and is defined as
\[
C=\mathrm{E}\left(K_{3}, \mathrm{D}\left(K_{2}, \mathrm{E}\left(K_{1}, P\right)\right)\right)
\]

7.State the difference between private key and public key Algorithm
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Private Key } & \multicolumn{1}{c|}{ Public Key } \\
\hline The key is kept secret by two people. & \begin{tabular}{l}
One key is publicly available while the other \\
remains secret.
\end{tabular} \\
\hline Once lost, the file will become unusable. & \begin{tabular}{l}
There's no possibility of loss since one of the \\
requirements is a public key.
\end{tabular} \\
\hline \begin{tabular}{l}
It is commonly used to protect disk drives and \\
other data storage devices.
\end{tabular} & \begin{tabular}{l}
It is commonly used to secure web sessions \\
and emails.
\end{tabular} \\
\hline It is a form of symmetrical encryption. & It is a form of asymmetrical encryption. \\
\hline It is faster since only one key is needed. & It is slower since two keys are required. \\
\hline
\end{tabular}

9.List the parameters (block size,key size and no of rounds) for the three AES versions.
* The algorithm is referred to as AES-128, AES-192, orAES-256, depending on the key length.
\begin{tabular}{|l|c|c|c|}
\hline Key Size (words/bytes/bits) & \(4 / 16 / 128\) & \(6 / 24 / 192\) & \(8 / 32 / 256\) \\
\hline Plaintext Block Size (words/bytes/bits) & \(4 / 16 / 128\) & \(4 / 16 / 128\) & \(4 / 16 / 128\) \\
\hline Number of Rounds & 10 & 12 & 14 \\
\hline Round Key Size (words/bytes/bits) & \(4 / 16 / 128\) & \(4 / 16 / 128\) & \(4 / 16 / 128\) \\
\hline Expanded Key Size (words/bytes) & \(44 / 176\) & \(52 / 208\) & \(60 / 240\) \\
\hline
\end{tabular}

\section*{10. What are the primitive operations used in RC4?}

The primitive operation used in RC4 is bit wise Exclusive-OR (XOR) operation.

\section*{11.Compare DES and AES}

\section*{AES}

\section*{DES}

If \(a\) and \(b\) belong to \(S\), then \(a+b\) is also in \(S\)
\(a+(b+c)=(a+b)+c\) for all \(a, b, c\) in \(S\)
There is an clement 0 in \(R\) such that
\(a+0=0+a=a\) for alla in \(S\)
For each \(a\) in \(S\) there is an elenent \(-a\) in \(S\)
such that \(a+(-a)=(-a)+a=0\)
\(a+b=b+a\) for all \(a, b\) in \(S\)
If \(a\) and \(b\) belong to \(S\), then \(a\) is also in \(S\)
\(a(b c)=(a b) c\) for all \(a, b, c i n S\)
\(a(b+c)=a b+a c\) for all \(a, b, c\) in \(S\)
\((a+b) c=a c+b c\) for all \(a, b, c\) in \(S\)
\(a b=b a\) for all \(a, b\) in \(S\)
There is an clement I in \(\$\) such that
\(a \mid=1 a=a\) for all \(a\) in \(S\)
If \(a, b\) in \(S\) and \(a b=0\), then eibher \(a=0\) or \(b=0\)
If \(a\) belongs to \(S\) and \(a\) 0, there is an clement \(a^{-1}\) in \(S\) such that \(a a^{-1}=a^{-1} a=1\)

Figure 2.2 Groups, Ring and Field

\section*{Ring}

A ring \(R\), sometimes denoted by \(\{R,+, \times\}\), is a set of elements with two binary operations, called addition and multiplication, \({ }^{6}\) such that for all \(a, b, c\) in \(R\) the following axioms are obeyed.
(A1-A5) \(R\) is an abelian group with respect to addition; that is, \(R\) satisfies axioms A1 through A5. For the case of an additive group, we denote the identity element as 0 and the inverse of \(a\) as \(-a\).
(M1) Closure under multiplication: If \(a\) and \(b\) belong to \(R\), then \(a b\) is also in \(R\).
(M2) Associativity of multiplication:
(M3) Distributive laws:
\[
\begin{aligned}
& a(b c)=(a b) c \text { for all } a, b, c \text { in } R . \\
& a(b+c)=a b+a c \text { for all } a, b, c \text { in } R . \\
& (a+b) c=a c+b c \text { for all } a, b, c \text { in } R .
\end{aligned}
\]
11.List the entities that are to be kept secret in conventional encryption techniques

Two main requirements are needed for secure use of conventional encryption:
iv(i). A strong encryption algorithm is needed. It is desirable that the algorithm should be in such a way that, even the attacker who knows the algorithm and has access to one or more cipher texts would be unable to decipher the ciphertext or figure out the key.
(ii). The secret key must be distributed among the sender and receiver in a very secured way. If in any way the key is ofiscovered and with the knowledge of algorithm, all communication using this key is readable.
is The important point is that the security of conventional encryption depends on
the secrecy of the key, not the secrecy of the algorithm i.e. it is not necessary to keep the algorithm
secret, but only the key is to be kept secret
is 12.What is the residues of 6 when \(n=8\)
When the integer a is divided by the integer n , the remainder \(\mathbf{r}\) is referred to as the residue.
Equivalently, \(\mathbf{r = a} \bmod \mathbf{n}\).
5 divided by 8 equals 0 with a remainder of 6 .
So, the residue of 6 when \(n=8\) is 6 .
13. Write down the purpose of the S-Boxes in DES?

S-boxes are non-linear transformations of a few input bits that provide confusion.
14. Define : Diffusion.

\section*{Diffusion}

If any of the characters in the plaintext is changed, then simultaneously several characters of the ciphertext should also be changed.

\section*{It is a classical transposition cipher.}

Note:Diffusion hides the relation between the ciphertext and plaintext.

\section*{P-box or transposition cipher}

\section*{Confusion}
* In Confusion each character of ciphertext depends on a different part of a key.
* In confusion the key does not directly related to ciphertext.
* It is a classical substitution cipher.
* Note:Confusion hides the relation between the ciphertext and key. * S-box or Substitution cipher

15. Define : Primality test.?
A primality test is an algorithm for determining whether an input number is prime.

\section*{16.Why modular arithmetic has been used in cryptography?}
Modular arithmetic allows us to easily create groups, rings and fields which are fundamental building blocks of most modern public-key cryptosystems.

\section*{17.State the difference between conventional encryption and public-key encryption}
Table 9.2 Conventional and Public-Key Encryption
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Conventional Encryption } & \multicolumn{1}{c|}{ Public-Key Encryption } \\
\hline Needed to Work: & Needed to Work: \\
\begin{tabular}{l}
1. The same algorithm with the same key is used \\
for encryption and decryption.
\end{tabular} & \begin{tabular}{l}
1. One algorithm is used for encryption and \\
decryption with a pair of keys, one for encryption \\
and one for decryption.
\end{tabular} \\
\begin{tabular}{ll}
2. The sender and receiver must share the \\
algorithm and the key.
\end{tabular} & \begin{tabular}{l}
2. The sender and receiver must each have one of \\
the matched pair of keys (not the same one).
\end{tabular} \\
\begin{tabular}{ll}
Needed for Security: & Needed for Security: \\
\begin{tabular}{ll}
1. The key must be kept secret. & 1. One of the two keys must be kept secret. \\
2. It must be impossible or at least impractical \\
to decipher a message if no other information \\
is available.
\end{tabular} & \begin{tabular}{l}
2. It must be impossible or at least impractical \\
to decipher a message if no other information \\
is available.
\end{tabular} \\
\begin{tabular}{ll}
3nowledge of the algorithm plus samples of \\
ciphertext must be insufficient to determine \\
the key.
\end{tabular} & \begin{tabular}{l}
3. Knowledge of the algorithm plus one of the keys \\
plus samples of ciphertext must be insufficient
\end{tabular} \\
to determine the other key.
\end{tabular} \\
\hline
\end{tabular}

\section*{18.Define primitive root}
primitive root If \(r\) and \(n\) are relatively prime integers with \(n>0\) and if \(\phi(n)\) is the least positive exponent \(m\) such that \(r^{m} \equiv 1 \bmod n\), then \(r\) is called a primitive root modulo \(n\).
19. What are the disadvantages of double DES?

The disadvantages of double DES is Meet in the middle Attack
Double DES results in a mapping that is not equivalent to a single DES encryption. But there is a way to attack this scheme, one that does not depend on any particular property of DES but that will work against any block encryption cipher. The algorithm, known as a meet-in-the-middle attack
22.Find GCD \((21,300)\) using Euclid's Algorithm

\section*{20.What is the Meet in the Middle Attack?}

\section*{Definition}
* This attack involves encryption from one end and decryption from other end and then matching the results in the middle is called as Meet in the Middle attack
* This attack requires knowing some plain text and cipher text pairs
21. List AES Evaluation criteria?

Three categories of criteria were as follows
(i)Security (ii)Cost (iii)Algorithm and Implementation characteristics
22.List important design considerations for a stream cipher.
* The encryption sequence should have a large period.
* The key stream should approximate the properties of a true random number stream as close as possible.
* The output of the pseudorandom number generator is conditioned on the value of the input key.

\section*{23.Compare linear and differential cryptanalysis?}

Linear Cryptanalysis and Differential Cryptanalysis are two different techniques used in the field of cryptanalysis to break cryptographic systems.
Here's a comparison of these techniques in a tabular format:
\begin{tabular}{|l|l|l||}
\hline & \multicolumn{1}{|c|}{ Linear Cryptanalysis } & \multicolumn{1}{c|}{ Differential Cryptanalysis } \\
\hline \begin{tabular}{l}
Primary \\
Objective
\end{tabular} & \begin{tabular}{l}
Find linear relationships between the \\
plaintext, ciphertext, and key bits
\end{tabular} & \begin{tabular}{l}
Find the differences (differentials) in plaintext, \\
ciphertext, or key bits
\end{tabular} \\
\hline \hline Type of Attack & Statistical attack & Statistical attack \\
\hline \begin{tabular}{l}
Target \\
Cryptosystems
\end{tabular} & \begin{tabular}{l}
Generally used for symmetric-key block \\
ciphers (e.g., DES)
\end{tabular} & \begin{tabular}{l}
Primarily used for symmetric-key block ciphers \\
(e.g., DES)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Linear Cryptanalysis & Differential Cryptanalysis \\
\hline Basis of Attack & Based on linear equations & Based on the differences (differentials) between plaintexts and ciphertexts \\
\hline Core Concept & Explores the correlation between bits using linear approximations & Explores how small input differences propagate through the encryption process \\
\hline Attack Complexity & Generally requires a lot of known plaintext-ciphertext pairs & Typically requires fewer known plaintext-ciphertext pairs compared to linear cryptanalysis \\
\hline Key Recovery & Tries to recover the secret key used for encryption & Tries to recover the secret key used for encryption \\
\hline Attack Difficulty & Often considered more challenging and computationally intensive & Can be more efficient and require fewer resources compared to linear cryptanalysis \\
\hline Resistance to Attacks & Cryptosystems designed with low linear approximation probability are more resistant & Cryptosystems designed with low differential probability are more resistant \\
\hline Historical Significance & Linear cryptanalysis played a significant role in breaking DES & Differential cryptanalysis played a significant role in breaking DES \\
\hline Practical Applicability & May not always be applicable due to its computational demands & Often used for practical attacks on symmetric-key ciphers, especially when plaintext-ciphertext pairs are limited \\
\hline
\end{tabular}
24.What are the various ways to distribute the keys?

\section*{Part B Questions}

\section*{1.Draw the functionality diagram (functionality in one round) of DES with number of bits in each flow of data. (8)}
[or]
Describe DES algorithm with neat diagram and explain the steps. Answer

DES Definition
Steps
i)Initial permutation
(ii)16 fiestal rounds
(iii)Swapping /left-right swap
(iv)Final Permutation /Inverse Initial Permutation

\subsection*{2.11.2 Basic Structure}

Figure 2.8 DES Encryption Algorithm

Figure 2.9 Single Round of DES Algorithm

\section*{Steps in Function Block}
1.Expansion Permutation
2.Definition of S-Boxes
3.Permutation Function

\section*{4.Inverse Permutation}
2.(b) (i) Explain with sample data: Four transformations in AES.

Or
What do you mean by AES Diagrammatically illustrate the structure of AES and describe the steps in AES encryption process with example.
The first \(\mathbf{N - 1}\) round consist of four distinct transformation functions:
(i)Sub Bytes,
(ii)Shift Rows,
(iii)Mix Columns, and
(iv)AddRoundKey.
(ii) In finite field arithmetic, \(\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=\) ?
* If the keystream is treated as a stream of bytes, then all of the \(\underline{\mathbf{2 5 6} \text { possible }}\) byte values should appear approximately equally often.
* The more random-appearing the keystream is, the more randomized the ciphertext is, making cryptanalysis more difficult.
3. The output of the pseudorandom number generator depends on the value of the input key.

To guard against brute-force attacks, the key needs to be sufficiently long.
The same considerations that apply to block ciphers are valid here. Thus, with current technology, a key length of at least \(\mathbf{1 2 8}\) bits is desirable.
\begin{tabular}{|c|c|c|}
\hline Cipher & Key Length & Speed (Mbps) \\
\hline DES & 56 & 9 \\
\hline \(3 D E S\) & 168 & 3 \\
\hline RC2 & Variable & 0.9 \\
\hline RC4 & Variable & 45 \\
\hline
\end{tabular}

\section*{Advantages of Stream Cipher}
* With a properly designed pseudorandom number generator, a stream cipher can be as secure as a block cipher of comparable key length.
* Stream ciphers that do not use block ciphers as a building block are typically faster and use far less code than do block ciphers.
* For applications that require encryption/decryption of a stream of data, such as over a data communications channel or a browser/Web link, a stream cipher might be the better alternative.

\section*{Draw backs of Stream Cipher}
* Cryptanalysis is easy
* If the two ciphertext streams are XORed together, the result is the XOR of the original plaintexts.
* If the plaintexts are text strings, credit card numbers, or other byte streams with known properties, then cryptanalysis may be successful

3.Demonstrate that the set of polynomials whose coefficients form a field is a ring.

In cryptography and algebraic structures, it's common to work with sets of polynomials whose coefficients come from a field. To demonstrate that the set of polynomials whose coefficients form a field is a ring, we need to show that it satisfies the properties of a ring, which are:
* Closure under addition.
* Closure under multiplication.
* Associativity of addition.
* Commutativity of addition.
* Existence of an additive identity.
* Existence of additive inverses.
* Associativity of multiplication.
* Distributive property.

\section*{Let's go through these properties step by step:}

Assumption: We are working with a field F, which means F is a set with two binary operations, addition (+) and multiplication \((*)\), such that F satisfies all the

If \(a\) and \(b\) belong to \(S\), then \(a+b\) is aloo in \(S\)
\(a+(b+c)=(a+b)+c\) for all \(a, b, c\) in \(S\)
There is an clement 0 in \(R\) such that
\(a+0=0+a=a\) for all ain \(S\)
For cach \(a\) in \(S\) ther is an clenent \(-a\) in \(S\)
sodet hata \(a+(-a)=(-a)+a=0\)
\(a+b=b+a\) forall \(a, b\) in \(S\)
If \(a\) and \(b\) belong \(t\) o \(S\), then \(a b\) is also in \(S\)
\(a(b c)=(a b) c\) for all \(a, b, c\) in \(S\)
\(a(b+c)=a b+a c\) for all \(a, b, c\) in \(S\)
\((a+b) c=a c+b c\) for all \(a, b, c\) in \(S\)
\(a b=b a\) for all \(a, b\) in \(S\)
There is an clement \(I\) in S such that
\(a|=| a=a\) foralla in \(S\)
If \(a, b\) in \(S\) and \(a b=0\), denen cilher \(a=0\) or \(b=0\)
If \(a\) belongs 10 S and \(a 0\), there is an clement \(a^{-1}\) in \(S\) such that \(a a^{-1}=a^{-1} a=1\)
Figure 2.2 Groups, Ring and Field
5.For each of the following element of DES, indicate the comparable element in AES available
(i)XOR of subkey material with the input to the function.

\section*{Adding the Key}
In this the \(\mathbf{1 2 8}\) bits of State are bitwise XORed with the 128bits of the round key.
(ii)f Function-function g in Key expansion
(iii)Permutation p-Mix Columns
(iv)Swapping of halves of the block
6.(i)Describe in detail the key generation in AES algorithm and its expansion format.

\begin{tabular}{|l|lllll|}
\hline \multicolumn{1}{|c|}{ Round } & \multicolumn{5}{|c|}{ Words } \\
\hline Pre-round & \(w_{0}\) & \(w_{1}\) & \(w_{2}\) & \(w_{3}\) \\
\hline 1 & \(w_{4}\) & \(w_{5}\) & \(w_{6}\) & \(w_{7}\) \\
\hline 2 & \(w_{8}\) & \(w_{9}\) & \(w_{10}\) & \(w_{11}\) \\
\hline & \(\cdots\) & & & \\
\hline\(N_{r}\) & \(w_{4 N_{r}}\) & \(w_{4 N_{r}+1}\) & \(w_{4 N_{r}+11}\) & \\
\hline
\end{tabular}

(ii)Describe triple DES and its applications.

Triple DES makes use of three stages of the DES algorithm, using a total of two or three distinct keys

\title{
Triple DES with 3 keys (Decryption)
}
- Decryption of Triple DES is reverse of encryption.
- In triple DES decryption process final cipher text C3 decrypt using K3, result is cipher text C 2 .
- C2 will be decrypt with K 2 and get C 1 cipher text.
- Then C 1 cipher text decrypt with K1 key and get original plain text P .

Mathematically triple DES (with 3 keys) decryption is represented as,
1. \(\mathrm{C} 2=\mathrm{D}(\mathrm{K} 3, \mathrm{C} 3)\)
2. \(\mathrm{C} 1=\mathrm{D}(\mathrm{K} 2, \mathrm{C} 2)\)
\[
\mathbf{C} 1=\mathbf{D}(\mathbf{K 2}, \mathbf{D}(\mathrm{K} 3, \mathrm{C} 3))
\]
3. \(\mathrm{P}=\mathrm{D}(\mathrm{K} 1, \mathrm{C} 1)\)

P=D (K1, D (K2, C2))
P = D (K1, D (K2, D (K3, C3)))
Where, \(P=\) Plain text, \(K 1=\) Key \(-1, K 2=\) Key \(-2, K 3=K e y-3, C 1=\) first cipher text,
\(C 2=\) second cipher text, C3 \(=\) Final cipher text,\(D=\) Decryption Process

\section*{Applications}

A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME
6. Explain the Key Generation, Encryption and Decryption of SDES algorithm in detail
SIMPLIFIED DATA ENCRYPTION STANDARD (S-DES)

Figure 2.6 S-DES Key Generation

\section*{Other Questions}
1.Block Cipher Modes of Operation
* Need of Modes of Block Cipher
(i)Electronic Code Book

(ii) Cipher Block Chaining Mode

Advantages and Disadvantages of ECB

\section*{CIPHER FEEDBACK MODE[Stream Cipher Mode]}

Output Feedback Mode

\section*{COUNTER MODE}

3.Key Distribution in Symmetric Encryption

\section*{Key Distribution between two parties}
Symmetric Key Distribution using Symmetric Encryption

* Key Distribution Scenario
* A transparent key control scheme

\section*{UNIT III PUBLIC KEY CRYPTOGRAPHY}
1.User \(X\) and \(Y\) exchange the key using Diffie Hellman algorithm.Assume \(a=5\) \(\mathbf{q}=11 \mathbf{X A}=\mathbf{2} \mathbf{X B}=3\)..Find the value of \(Y A, Y B\) and \(k[N o v / D e c ~ 2022]\)

In the Diffie-Hellman key exchange algorithm, two parties, \(X\) and \(Y\), exchange public keys and then use each other's public keys to compute a shared secret key. Let's go step by step:

Given parameters:
- \(\operatorname{Prime} \operatorname{modulus~}(q)=11\)
- Primitive root (a) \(=5\)
- Private key of \(X(X A)=2\)
- Private key of \(Y(X B)=3\)
1. Calculate the public key for \(X(Y A)\) :
\(Y A=\left(a^{\wedge} X A\right) \% q\)
\(Y A=\left(5^{\wedge} 2\right) \% 11\)
\(\mathrm{YA}=25 \% 11\)
\(Y A=3\)
2. Calculate the public key for \(Y(Y B)\) :
\[
\begin{aligned}
& Y B=\left(a^{\wedge} X B\right) \% q \\
& Y B=\left(5^{\wedge} 3\right) \% 11 \\
& Y B=125 \% 11 \\
& Y B=8
\end{aligned}
\]
1. Calculate the shared secret key \((k)\) by both \(X\) and \(Y\) :

For X :
\(k X=\left(Y B^{\wedge} X A\right) \% q\)
\(k X=\left(8^{\wedge} 2\right) \% 11\)
\(k X=64 \% 11\)
\(k X=9\)
For \(Y\) :
\(k Y=\left(Y A^{\wedge} X B\right) \% q\)
\(k Y=\left(3^{\wedge} 3\right) \% 11\)
\(k Y=27 \% 11\)
\(k Y=5\)

Now, \(X\) and \(Y\) both have the same shared secret key:
- \(k X=9\) (computed by \(X\))
- \(k Y=5\) (computed by Y)

The Diffie-Hellman key exchange is successful, and \(X\) and \(Y\) share the secret key " \(k\)," where \(k\) \(=9\) for X and \(\mathrm{k}=5\) for Y .
2. What mathematical problem is behind security of the ElGamal cryptosystems [Nov/Dec 2022]
The security of the ElGamal cryptosystem is based on the difficulty of solving the discrete logarithm problem (DLP) in a finite field or elliptic curve group.

The mathematical problem at the core of ElGamal security is the discrete logarithm problem, and it plays a fundamental role in many public key cryptography systems. Here's a brief overview of the discrete logarithm problem:
Discrete Logarithm Problem (DLP): Given a group G, a generator \(g\) of that group, and an element \(h\) in \(G\), find the integer \(x\) such that \(\mathbf{g}^{\wedge} \mathbf{x}=\mathbf{h}\).
In other words, given h , find the exponent x that was used to compute h from the generator g .
2.For \(p=11\) and \(q=19\) and choose \(d=17\). Apply RSA algorithm where Cipher message \(=80\) and thus find the plain text

\(80^{\prime} \operatorname{med} 209=80\)
\(80^{2} \bmod 209=130\)
\(80^{4} \mathrm{mod} 209=130 \times 130=180\)
\(80^{8} \bmod 209=180 \times 180=5\)
\(F 1=80 \times 130 \times 180 \times 180 \times 180\)
3.Find \(\operatorname{gcd}(2740,1760)\) using Euclidean Algorithm. by using formula \(\operatorname{gcd}(\mathrm{a}, \mathrm{b})\)
Find the greatest common divisor (GCD) of two numbers using the Euclidean algorithm
1. Start with \(a=2740\) and \(b=1760\).
2. Calculate \(a \bmod b\) :
\(a \bmod b=2740 \bmod 1760=980\)
3. Now, set \(a=b\) and \(b=a \bmod b\) :
\(a=1760\) and \(b=980\)
4. Calculate \(a \bmod b\) :
\(a \bmod b=1760 \bmod 980=780\)
5. Again, set \(a=b\) and \(b=a \bmod b\) :
\(a=980\) and \(b=780\)
6. Continue this process:
\(a \bmod b=980 \bmod 780=200\)
\(a=780\) and \(b=200\)
7. Repeat:
\(a \bmod b=780 \bmod 200=180\)
\(a=200\) and \(b=180\)
8. Repeat:
\(a \bmod b=200 \bmod 180=20\)
\(a=180\) and \(b=20\)
9. Repeat:
\(a \bmod b=180 \bmod 20=0\)
10. Now, \(a\) is 20 , and \(b\) is 0 . According to the algorithm, when \(b\) becomes 0 , the GCD is the nonzero value of \(a\). So, the GCD of 2740 and 1760 is 20 .

Therefore, the GCD of 2740 and 1760 is indeed 20 , as calculated using the Euclidean algorithm.
4. Using Fermat's theorem, check whether 19 is prime or not? Consider a is 7.

Fermat's Little Theorem states that if \(p\) is a prime number and \(a\) is an integer not divisible by \(p\), then:
\(a^{p-1} \equiv 1(\bmod p)\)

In other words, if \(a^{p-1}\) leaves a remainder of 1 when divided by \(p\), then \(p\) is prime. However, if \(a^{p-1}\) does not leave a remainder of 1 when divided by \(p\), then \(p\) is definitely not prime.

In your case, you want to check whether 19 is prime or not with \(a=7\). So, calculate \(7^{18}\) \((\bmod 19)\) :
\(7^{18} \equiv 1(\bmod 19)\)

Since \(7^{18}\) leaves a remainder of 1 when divided by 19 , according to Fermat's Little Theorem, 19 is a prime number.

So, 19 is indeed prime.
5. Find atleast two points lies in the elliptic curve \(y^{\wedge} 2=x^{\wedge} 3+2 x+3(\bmod 5)\)

To find points on the elliptic curve \(y^{2} \equiv x^{3}+2 x+3(\bmod 5)\), you can try different values of \(x\) and calculate the corresponding \(y\) values. Remember that you need to check for residues modulo 5 . Here are some values of \(x\) and their corresponding \(y\) values:
1. \(x=0\) :
\(y^{2} \equiv 0^{3}+2 \cdot 0+3 \equiv 3(\bmod 5)\)
There are no integers \(y\) such that \(y^{2} \equiv 3(\bmod 5)\).
2. \(x=1\) :
\(y^{2} \equiv 1^{3}+2 \cdot 1+3 \equiv 6 \equiv 1(\bmod 5)\)
So, \(y= \pm 1\) are solutions.
3. \(x=2\) :
\(y^{2} \equiv 2^{3}+2 \cdot 2+3 \equiv 11 \equiv 1(\bmod 5)\)
Again, \(y= \pm 1\) are solutions.
4. \(x=3\) :
\(y^{2} \equiv 3^{3}+2 \cdot 3+3 \equiv 30 \equiv 0(\bmod 5)\)
So, \(y=0\) is a solution.
5. \(x=4\) :
\(y^{2} \equiv 4^{3}+2 \cdot 4+3 \equiv 75 \equiv 0(\bmod 5)\)
Here, \(y=0\) is also a solution.
So, two points on the elliptic curve \(y^{2} \equiv x^{3}+2 x+3(\bmod 5)\) are:
1. \((1,1)\)
2. \((2,1)\)

These are two points that lie on the curve modulo 5.
6.Find the ged(68,8) using Euclidean Algorithm [Apr/May 2023]
\(\operatorname{GCD}(a, b)=\operatorname{GCD}(b, a \bmod b)\)
In this case, \(a=68\) and \(b=8\), so:
\(\operatorname{GCD}(68,8)=\operatorname{GCD}(8,68 \bmod 8)\)
Now, let's calculate \(68 \bmod 8\) :
\(68 \bmod 8=4\)

So, we have:
\(\operatorname{GCD}(68,8)=\operatorname{GCD}(8,4)\)
Now, we can continue applying the formula:
\(\operatorname{GCD}(8,4)=\operatorname{GCD}(4,8 \bmod 4)\)
Calculate \(8 \bmod 4\) :
\(8 \bmod 4=0\)

\section*{\(\operatorname{GCD}(4,0)\)}

When you reach a remainder of 0 , the \(G C D\) is the non-zero value from the previous step, which is 4 .

So, \(\operatorname{GCD}(68,8)=4\),
7.Find \(\boldsymbol{q}\) (21)(April /May 2023)

\section*{Answer}
1. Prime Factorization of 21:
\[
21=3 \times 7
\]
2. Euler's Totient Formula for Composite Numbers:

For a positive integer n represented as a product of its prime factors as \(n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}}\).
\(\ldots \cdot p_{k}^{a_{k}}\), where \(p_{1}, p_{2}, \ldots, p_{k}\) are distinct prime factors, you can calculate \(\varphi(\mathrm{n})\) using the formula:
\(\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)\)
For 21 , which is \(21=3 \cdot 7\), you can calculate \(\varphi(21)\) as follows:
\(\varphi(21)=21\left(1-\frac{1}{3}\right)\left(1-\frac{1}{7}\right)=21 \cdot \frac{2}{3} \cdot \frac{6}{7}=12\)
So, \(\varphi(21)\) is equal to 12 . There are 12 positive integers less than or equal to 21 that are coprime to 21 .
8. Find the value of \(\mathbf{7}^{\wedge} 8 \bmod 15\) Using Euler's Theorem

Euler's Theorem states that if \(a\) and \(n\) are coprime (i.e., \(a\) and \(n\) have no common factors other than 1), then:
\(a^{\phi(n)} \equiv 1(\bmod n)\)
where \(\phi(n)\) is Euler's totient function, which counts the number of positive integers less than \(n\) that are coprime to \(n\).

In this case, you want to find the value of \(7^{8} \bmod 15\). First, let's calculate \(\phi(15)\) :
\(15=3 \times 5\)
\(\phi(15)=15\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=15 \times \frac{2}{3} \times \frac{4}{5}=8\)

Now, using Euler's Theorem:
\(7^{8} \equiv 1(\bmod 15)\)

Therefore, the value of \(7^{8} \bmod 15\) is 1 .
9.Find the multiplicative inverse of 313 in modulo 67
1. Use the Extended Euclidean Algorithm to find the greatest common divisor (GCD) of 313 and 67 while keeping track of coefficients:
\(313=4 \cdot 67+45\)
\(67=1 \cdot 45+22\)
\(45=2 \cdot 22+1\)
2. Now, work backward to find the coefficients that satisfy the equation \(313 x+67 y=1\) :

Starting with the last equation: \(45=2 \cdot 22+1\)
Rewriting it as: \(1=45-2 \cdot 22\)
Then using the equation \(67=1 \cdot 45+22\) :
\(1=45-2 \cdot(67-1 \cdot 45)=3 \cdot 45-2 \cdot 67\)
Next, using the equation \(313=4 \cdot 67+45\) :
\(1=3 \cdot 45-2 \cdot 67=3 \cdot(313-4 \cdot 67)-2 \cdot 67\)
Simplifying further:
\(1=3 \cdot 313-14 \cdot 67\)
3. Now, notice that the coefficient of 313 is 3 . Since we're looking for the multiplicative inverse of 313 modulo 67, we need the coefficient of 313 to be positive and less than 67 . To achieve this, we can reduce 3 modulo 67:
\(3 \equiv 3(\bmod 67)\)

So, the multiplicative inverse of 313 in modulo 67 is 3 .
10.Write the difference between public key and private key crypto systems? (APR/MAY 2012\&APR/MAY 2017)(Analysis)
\begin{tabular}{|c|c|c|}
\hline s.no. & PRIVATE KEY & PUBLIC KEY \\
\hline 1. & Private key is faster than public key. & It is slower than private key. \\
\hline 2. & In this, the same key (secret key) and algorithm is used to encrypt and decrypt the message. & In public key cryptography, two keys are used, one key is used for encryption and while the other is used for decryption. \\
\hline 3. & In private key cryptography, the key is kept as a secret. & In public key cryptography, one of the two keys is kept as a secret. \\
\hline 4. & Private key is Symmetrical because there is only one key that is called secret key. & Public key is Asymmetrical because there are two types of key: private and public key. \\
\hline 5. & In this cryptography, sender and receiver need to share the same key. & In this cryptography, sender and receiver does not need to share the same key. \\
\hline 6. & In this cryptography, the key is private. & In this cryptography, public key can be public and private key is private. \\
\hline
\end{tabular}
11.State whether symmetric and asymmetric cryptographic algorithms need key exchange? (APR/MAY 2014)(Analysis)
* Key exchange is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm.
* Symmetric encryption requires the sender and receiver to share a secret key.
* Asymmetric encryption requires the sender and receiver to share a public key.
* If the cipher is a symmetric key cipher, both will need a copy of the same key.
* If an asymmetric key cipher with the public/private key property, both will need the other's public key

\section*{12.What is the Fermat's theorem? (Nov/Dec 2017)? (Remember)}

Fermat's theorem states the following: If \(p\) is prime and \(a\) is a positive integer not divisible by \(p\), then
\[
a^{p^{-1}} \equiv 1(\bmod p)
\]

\section*{Uses of Fermat's Theorem}
> This theorem is method of determining maxima and minima: in one dimension, one can find extreme by simply computing the stationary points (by computing the zeros of the derivative), the non- differentiable points, and the boundary points, and then investigating this set to determine the extreme.
> One can do this either by evaluating the function at each point and taking the maximum, or by analyzing the derivatives further, using the first derivative test, the second derivative test, or the higher-order derivative test.
> In dimension above 1, one cannot use the first derivative test any longer, but the second derivative test and higher-order derivative test generalize.

\section*{13.Define Elliptic curve[Nov/Dec 2016]}

It is a plane curve over a finite field which is made up of the points satisfying the equation: \(\quad \mathbf{y}^{2}=\mathbf{x}^{3}+\mathbf{a x}+\mathbf{b}\).
In this elliptic curve cryptography example, any point on the curve can be mirrored over the x -axis and the curve will stay the same.

14. Perform encryption for the plain text \(\mathrm{M}=88\) using the RSA algorithm with \(\mathrm{p}=17\) and \(q=11 \mathrm{e}=7 .[\mathrm{Nov} / \mathrm{Dec} 2017]\)

For this example, the keys were generated as follows.
1. Select two prime numbers, \(p=17\) and \(q=11\).
2. Calculate \(n=p q=17 \times 11=187\).
3. Calculate \(\phi(n)=(p-1)(q-1)=16 \times 10=160\).
4. Select \(e\) such that \(e\) is relatively prime to \(\phi(n)=160\) and less than \(\phi(n)\); we choose \(e=7\).
5. Determine \(d\) such that \(d e \equiv 1(\bmod 160)\) and \(d<160\). The correct value is \(d=23\), because \(23 \times 7=161=(1 \times 160)+1 ; d\) can be calculated using the extended Euclid's algorithm (Chapter 4).
The resulting keys are public key \(P U=\{7,187\}\) and private key \(P R=\{23,187\}\). The example shows the use of these keys for a plaintext input of \(M=88\). For encryption, we need to calculate \(C=88^{7} \bmod 187\). Exploiting the properties of modular arithmetic, we can do this as follows.
\[
\begin{aligned}
88^{7} \bmod 187= & {\left[\left(88^{4} \bmod 187\right) \times\left(88^{2} \bmod 187\right)\right.} \\
& \left.\times\left(88^{1} \bmod 187\right)\right] \bmod 187 \\
88^{1} \bmod 187= & 88 \\
88^{2} \bmod 187= & 7744 \bmod 187=77 \\
88^{4} \bmod 187= & 59,969,536 \bmod 187=132 \\
88^{7} \bmod 187= & (88 \times 77 \times 132) \bmod 187=894,432 \bmod 187=11
\end{aligned}
\]

\section*{15.Difference between Conventional and Public Key Encryption}

Table 9.2 Conventional and Public-Key Encryption
\begin{tabular}{|c|c|}
\hline Conventional Encryption & Public-Key Encryption \\
\hline \begin{tabular}{l}
Needed to Work: \\
1. The same algorithm with the same key is used for encryption and decryption. \\
2. The sender and receiver must share the algorithm and the key. \\
Needed for Security: \\
1. The key must be kept secret. \\
2. It must be impossible or at least impractical to decipher a message if no other information is available. \\
3. Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key.
\end{tabular} & \begin{tabular}{l}
Needed to Work: \\
1. One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption. \\
2. The sender and receiver must each have one of the matched pair of keys (not the same one) \\
Needed for Security: \\
1. One of the two keys must be kept secret. \\
2. It must be impossible or at least impractical to decipher a message if no other information is available. \\
3. Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.
\end{tabular} \\
\hline
\end{tabular}
18.State Euler's Theorem?[Apr/May 2018]

\section*{Euler's Theorem}

Euler's theorem states that for every \(a\) and \(n\) that are relatively prime:
\(a^{\phi(n)} \equiv 1(\bmod n)\)
19. Perform encryption and decryption for the plain text \(\mathrm{M}=8\) using the RSA algorithm with \(\mathrm{p}=7\) and \(\mathrm{q}=11 \mathrm{e}=17\).[Apr/May 2018]
\(P=7 ; q=11 ; e=17 ; M=8\). (APRIL/ MAY 2018)
Soln:
\(n=p q\)
\(\mathrm{n}=7\) * \(11=77\)
ö \((\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=6 * 10=60\)
\(e=17\)
\(d=27\)
\(\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}\)
\(C=8^{17} \bmod 77=57\)
\(M=C^{d} \bmod n=57^{27} \bmod 77=8\)
20.Give the applications of public key crypto systems [Apr/May 2019]

Encryption/decryption: The sender encrypts a message with the recipient's public key.
- Digital signature: The sender "signs" a message with its private key. Signing is achieved by a cryptographic algorithm applied to the message or to a small block of data that is a function
of the message.
- Key exchange: Both sender \& receiver cooperate to exchange a session key.
21. What Primality testing. Mention any three Primality testing methods

Primality testing method is a method to find and to prove whether the given number is prime number.

Methods
1. Native Algorithm
2. Fermat's Primality Test
3. Miller - Rabin Primality Test

\section*{22. what is Miller-Rabin Primality Test}
3. Miller - Rabin Primality Test
```

Function Miller-Rabin (x)
x-1 = (2w)y //x is the input number for primality test
!/4 is an odd numbera to 2
select a randomly in the range [2, (x-1)]
Z = a
if Z congruent 1 (mod}x)\mathrm{ then return prime
for i=1 to w-1
If }Z\mathrm{ congruent -1 (mod }x)\mathrm{ then return prime
Z= Z' mod x
}
return composite

```

\section*{23. What is Discrete Logarithm}

Discrete Logarithm are fundamental to a number of public-key algorithms, including Diffie Hellman key exchange and the digital signature algorithm. Consider the equation
\[
y=g^{\wedge} x \bmod p
\]
given \(\mathrm{g}, \mathrm{x}\) and p , it is a straight forward matter to calculate y . At the worst, we must perform x repeated multiplications, and algorithms exist for achieving greater Efficiency.

\section*{24. Define Euler's Totient Function}
* Euler's Totient Function, often denoted as \(\varphi\) (phi) or Euler's phi function, is a mathematical function that is used to count the number of positive integers less than or equal to a given positive integer \(\boldsymbol{n}\) that are coprime (relatively prime) to \(n\).
* The formula for Euler's Totient Function \(\varphi(\mathbf{n})\) for a positive integer \(\mathbf{n}\) is as follows:
* \(\varphi(\mathrm{n})=\mathrm{n} *\left(1-1 / \mathrm{p}_{1}\right) *\left(1-1 / \mathrm{p}_{2}\right) * \ldots *\left(1-1 / \mathrm{p}_{\mathrm{r}}\right)\)
* where n is the given positive integer, and \(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{r}}\) are its distinct prime factors. This formula essentially involves multiplying \(n\) by the product of (1-1/p) for each prime factor
* p of n .

\section*{25. Requirements of Public Key Cryptography}
- The PKC algorithm must fulfill the following conditions:
1. It is computationally easy for party \(B\) to generate the key pair \(\left(P U_{b}\right.\) and \(\left.P R{ }_{b}\right)\)
2. It is computationally easy for a sender \(\mathbf{A}\), knowing the public key and the message to be encrypted, \(M\), to generate the corresponding ciphertext. \(C=\boldsymbol{E}\left(\boldsymbol{P} U_{b}, M\right)\)
3. It is computationally easy for the receiver \(\mathbf{B}\) to decrypt the resulting ciphertext using private key to recover the original message. \(M=\boldsymbol{D}\left(P R_{b}, C\right)=\boldsymbol{D}\left(P R_{b}, E\left(P U_{b}, M\right)\right)\)
4. It is computationally infeasible for an attacker, to determine private key from known public key.
5. It is computationally infeasible for an attacker, to recover original message from known public key and cipher text.

\section*{26 Different attacks in RSA}

Four possible approaches to attacking the RSA algorithm are
- Brute force: This involves trying all possible private keys.
- Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.
- Timing attacks: These depend on the running time of the decryption algorithm.
- Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm

\section*{27. What is Man in the Middle Attack}

A man in the middle (MITM) attack is a general term for when a perpetrator positions himself in a conversation between a user and an application -either to eavesdrop or to impersonate one of the parties, making it appear as if a normal exchange of information is underway.

\section*{28. What is Timing attack in RSA}

It is a side channel attack based on measuring the length of time it takes digitally sign a message.

\section*{Timing Attack countermeasures}

Timing attack is a serious threat, there are simple countermeasures that can be used, including the following.
- Constant exponentiation time: Ensure that all exponentiations take the same amount of time before returning a result. This is a simple fix but does degrade performance
29.What are the two uses of public key cryptography regarding keydistribution?

The two uses of public key cryptography regarding the issues of key distribution.
They are \(\mathbf{1}\). Distribution of public keys
2. Use of public key encryption to distribute secret keys
30. Using Fermat's theorem, check whether 19 is prime or not? Consider a is 7.

Fermat's Little Theorem states that if " \(p\) " is a prime number and " \(a\) " is an integer not divisible by "p," then:
\(a^{\wedge}(p-1) \equiv 1(\bmod p)\)

In your case, you want to check whether 19 is prime using Fermat's Little Theorem with "a" being 7 . So, let's calculate:
\(a^{\wedge}(p-1) \equiv 7^{\wedge}(19-1) \equiv 7^{\wedge} 18(\bmod 19)\)

Now, calculate \(7^{\wedge} 18\) modulo 19:
\(7^{\wedge} 1 \equiv 7(\bmod 19)\)
\(7^{\wedge} 2 \equiv 7^{*} 7 \equiv 49 \equiv 11(\bmod 19)\)
\(7 \wedge 4 \equiv 11^{\wedge} 2 \equiv 121 \equiv 8(\bmod 19)\)
\(7^{\wedge} 8 \equiv 8^{\wedge} 2 \equiv 64 \equiv 7(\bmod 19)\)
\(7^{\wedge} 16 \equiv 7^{\wedge} 8^{*} 7^{\wedge} 8 \equiv 7^{*} 7 \equiv 49 \equiv 11(\bmod 19)\)

Now, we can calculate \(7^{\wedge} 18\) :
Now, we can calculate \(7^{\wedge} 18\) :
\(7^{\wedge} 18 \equiv 7^{\wedge} 16 * 7^{\wedge} 2 \equiv 11 * 11 \equiv 121 \equiv 8(\bmod 19)\)
According to Fermat's Little Theorem, if 19 were prime, then \(7 \wedge 18\) would be congruent to \(1(\bmod 19)\). However, we found that \(7^{\wedge} 18\) is congruent to \(8(\bmod 19)\), which means \(7^{\wedge} 18\) is not congruent to \(1(\bmod 19)\).
Therefore, based on Fermat's Little Theorem, 19 is not prime.

\section*{23. Find the value of \(7^{8} \bmod 15\) Using Euler's theorem.}

To find the value of \(7^{8} \bmod 15\) using Euler's Totient Theorem, we first need to calculate Euler's Totient Function \(\phi(15)\), which gives us the count of positive integers less than 15 are relatively prime to 15 .

Prime factorization of 15 :
\(15=3 \times 5\)

Euler's Totient Function for a number \(n\) that is a product of distinct primes is given by: \(\phi(n)=\left(p_{1}-1\right) \times\left(p_{2}-1\right) \times \ldots \times\left(p_{k}-1\right)\)

In this case:
\(\phi(15)=(3-1) \times(5-1)=2 \times 4=8\)
Now, we can apply Euler's Totient Theorem, which states that if \(a\) and \(n\) are coprime (relatively prime), then:
\(a^{\phi(n)} \equiv 1 \bmod n\)
In our case, \(a=7\) and \(n=15\), and we've already calculated \(\phi(15)=8\), so:
\(7^{8} \equiv 1 \bmod 15\)

\section*{Part B Questions}
1.User \(A\) and \(B\) use the Diffie Hellman key exchange technique, a common prime \(\mathrm{q}=11\) and a primitive root alpha \(=7\)
(i) If user A has private key \(\mathrm{XA}=3\). What is A's public key YA?
(ii) If user B has private key \(\mathrm{XB}=6\). What is B 's public key YB ?
(iii) What is the shared secret key? Write the Algorithm

\section*{Answer}

User A and User B want to perform the Diffie-Hellman key exchange with the given parameters:

Common prime (q) \(=11\)
Primitive root (alpha) \(=7\)
Here's how they can perform the key exchange:
User A selects a private key (a). Let's say User A chooses \(\mathbf{a}=3\).
User B selects a private key (b). Let's say User B chooses b \(=4\).
To calculate User A's public key (YA) given that User A's private key (XA) is 3, you can use the Diffie-Hellman formula:
\(\mathrm{Y}_{\mathrm{A}}=\left(\right.\) alpha^ \(\left.\mathrm{X}_{\mathrm{A}}\right) \bmod \mathrm{q}\)
In this case:
Common prime (q) \(=11\)
Primitive root \((\) alpha \()=7\)
User A's private key \((\mathrm{XA})=3\)
```

alpha^\timesA = 7^3 = 343
Now, calculate (343 mod 11):
343 mod 11=3
So, User A's public key (YA) is 3.

```
(ii)if user B has private key \(X_{B}=6\). What is \(B\) 's public key \(Y_{B}\) ?
\begin{tabular}{|c|c|}
\hline \(Y B=\left(a l p h a^{\wedge} \times B\right) \bmod q\) & \(Y B=\left(7^{\wedge} 6\right) \bmod 11\) \\
\hline & Calculate \({ }^{\wedge} \times\) first: \\
\hline In this case: & \[
7 \wedge 6=7 \star 7 * 7 * 7 * 7 * 7=117649
\] \\
\hline - Common prime (q) = 11 & Now, calculate (7^6) mod 11. \\
\hline - User B's private key \((X B)=6\) & \(117649 \bmod 11=9\) \\
\hline & So, User B's public key (YB) is 9 . \\
\hline
\end{tabular}

The shared secret key in the Diffie-Hellman key exchange is calculated by both User A and User B using their own private keys and the other user's public key. Here's the algorithm to calculate the shared secret key:
1. User \(A\) and User B agree on common parameters:
- Common prime (q)
- Primitive root (alpha)
2. Each user selects a private key:
- User A selects XA (private key)
- User B selects XB (private key)
3. Both users calculate their public keys:
- User A: YA = (alpha^XA) mod q
- User B: YB = (alpha^XB) mod q
4. User A and User B exchange their public keys with each other.
5. Both users use the received public key and their own private key to calculate the shared secret key:
- User \(A\) calculates \(K=\left(Y B^{\wedge} X A\right) \bmod q\)
- User \(B\) calculates \(K=\left(Y A^{\wedge} X B\right) \bmod q\)
6. The shared secret key \((K)\) will be the same for both User A and User B. They can use this kev for secure communication.

\section*{2.Identify the possible threats for RSA algorithm and list their counter measures. Perform Encryption and decryption using RSA algorithm with p=3 q=11 e=7 and \(\mathrm{N}=5\)}

RSA (Rivest-Shamir-Adleman) is a widely used public key cryptography algorithm, but like any cryptographic system, it's not immune to threats. Here are some possible threats to RSA and countermeasures to mitigate them:

\section*{Brute Force Attack:}

Threat: An attacker tries all possible private keys to decrypt ciphertext.
Countermeasure: Choose sufficiently large key sizes (e.g., 2048 bits or more) to make brute force attacks computationally infeasible.

\section*{Factorization Attack:}

Threat: Attackers try to factor the modulus (N) to compute private keys.
Countermeasure: Use large prime numbers for p and q , and regularly update keys as
computational power increases. Employ key lengths that are resistant to current and future factorization methods.

\section*{Timing Attacks:}

Threat: Attackers analyze the time taken by the decryption process to extract information about the private key.
Countermeasure: Implement constant-time cryptographic operations to eliminate timing variations in decryption.

\section*{Chosen Plaintext Attacks:}

Threat: Attackers obtain ciphertexts for chosen plaintexts and use them to deduce the private key.
Countermeasure: Apply padding schemes like RSA PKCS\#1 v1.5 or OAEP to make ciphertexts indistinguishable from random data.
3. Demonstrate the DH key exchange methodology using following key values : \(p=11, g=2 X_{A}=9,4 X_{B}=4\).
Answer
- \(p=11\) (the prime modulus)
- \(g=2\) (the base)
- Alice's private key: \(X_{a}=9\)
- Bob's private key: \(X_{b}=4\)
1. Public Key Exchange:
- Alice calculates her public key \(Y_{a}\) :
\[
Y_{a}=g^{X_{a}} \bmod p=2^{9} \bmod 11=512 \bmod 11=4
\]
- Bob calculates his public key \(Y_{b}\) :
\[
Y_{b}=g^{X_{b}} \bmod p=2^{4} \bmod 11=16 \bmod 11=5
\]
2. Exchange Public Keys:
- Alice sends her public key \(Y_{a}=4\) to Bob.
- Bob sends his public key \(Y_{b}=5\) to Alice.
3. Shared Secret Calculation:
- Alice calculates the shared secret key using Bob's public key:
\(K_{\text {shared }}=Y_{b}^{X_{a}} \bmod p=5^{9} \bmod 11\)
To compute \(5^{9} \bmod 11\), you can use successive squaring:
- \(5^{2} \bmod 11=25 \bmod 11=3\)
- \(5^{4} \bmod 11=\left(5^{2} \bmod 11\right)^{2} \bmod 11=3^{2} \bmod 11=9\)
- \(5^{8} \bmod 11=\left(5^{4} \bmod 11\right)^{2} \bmod 11=9^{2} \bmod 11=4\)
\(\cdot 5^{9} \bmod 11=5^{8} \cdot 5 \bmod 11=4 \cdot 5 \bmod 11=20 \bmod 11=9\)
- Bob calculates the shared secret key using Alice's public key:
\(K_{\text {shared }}=Y_{a}^{X_{b}} \bmod p=4^{4} \bmod 11\)
To compute \(4^{4} \bmod 11\) :
- \(4^{2} \bmod 11=16 \bmod 11=5\)
- \(4^{4} \bmod 11=\left(4^{2} \bmod 11\right)^{2} \bmod 11=5^{2} \bmod 11=25 \bmod 11=3\)
4. Both Alice and Bob have computed the same shared secret key \(K_{\text {shared }}=9\).

Now, Alice and Bob can use this shared secret key for secure communication, such as encryption and decryption, because only they know the private keys \(X_{a}\) and \(X_{b}\), and it's computationally difficult for an eavesdropper to calculate the shared secret without knowing at least one of the private keys.
3.State Chinese Remainder theorem and find \(X\) for the given set of congruent equations using CRT. \(X=2(\bmod 3), X=3(\bmod 5), X=2(\bmod 7)\).[NOV 2016] Or
State Chinese Remainder Theorem and find \(\mathbf{X}\) for the given set of congruent equations using CRT
\(\mathrm{X}=1\) (MOD 5)
\(\mathrm{X}=\mathbf{2}(\mathrm{MOD} 7)\)
\(\mathrm{X}=3(\bmod 9)\)
X=4(mod 11) (13 Marks Nov/Dec 2020]
Answer
Refer the content in the last page of this Notes
4(i).Find the gcd (6432,768) by using Extended Euclidean algorithm
1. Begin by using the Euclidean Algorithm to find the GCD of the two numbers: \(6432=8 \cdot 768+288\)
2. Now, replace 6432 with 768 and 768 with the remainder (288):
\(768=2 \cdot 288+192\)
3. Continue the process:
\(288=1 \cdot 192+96\)
\(192=2 \cdot 96+0\)
4. When you reach a remainder of 0 , the GCD is the last non-zero remainder, which is 96 .

So, \(\operatorname{GCD}(6432,768)=96\).

Now, let's use the Extended Euclidean Algorithm to find the coefficients \(x\) and \(y\) such that:
\(6432 x+768 y=\operatorname{GCD}(6432,768)=96\)

We will work our way backward from the last non-zero remainder (96):

We will work our way backward from the last non-zero remainder (96):
1. Starting with the equation \(192=2 \cdot 96+0\), we can express 96 in terms of 192 and 288 : \(96=192-2 \cdot 288\)
2. Next, we use the equation \(288=1 \cdot 192+96\) to express 288 in terms of 192 and 6432 : \(288=6432-8 \cdot 768\)
3. Now, we substitute the expression for 288 into the previous equation:
\(96=192-2 \cdot(6432-8 \cdot 768)\)
4. Continue to simplify:
\(96=192-2 \cdot 6432+16 \cdot 768\)
5. Rearrange the terms:
\(96=-2 \cdot 6432+16 \cdot 768+192\)
6. Now, we can see the coefficients \(x\) and \(y\) :
- \(x=-2\)
- \(y=16\)

So, the GCD of 6432 and 768 is 96 , and the coefficients for the Bézout's identity are \(x=-2\) and \(y=16\).
(ii)Find \(\boldsymbol{\alpha}(519)\)

To do this, you can use the formula for \(\varphi(\mathrm{n})\) when n is a product of prime factors:

If \(n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot \ldots \cdot p_{k}^{a_{k}}\), where \(p_{1}, p_{2}, \ldots, p_{k}\) are distinct prime factors, then
\(\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)\)
In the case of 519, you can factor it as follows:
\(519=3 \cdot 7 \cdot 31\)

Now, apply the formula:
\(\phi(519)=519\left(1-\frac{1}{3}\right)\left(1-\frac{1}{7}\right)\left(1-\frac{1}{31}\right)\)
Calculate the values inside the parentheses:
\(\phi(519)=519\left(\frac{2}{3}\right)\left(\frac{6}{7}\right)\left(\frac{30}{31}\right)\)

Now, multiply these fractions:
\(\phi(519)=519 \cdot \frac{2}{3} \cdot \frac{6}{7} \cdot \frac{30}{31}\)

Simplify:
\[
\phi(519)=260 \cdot \frac{6}{7} \cdot \frac{30}{31}
\]

Now, multiply the numbers together:
\(\phi(519)=\frac{260 \cdot 6 \cdot 30}{7 \cdot 31}\)

Calculate the numerator and denominator separately:

Numerator: \(260 \cdot 6 \cdot 30=46800\)
Denominator: \(7 \cdot 31=217\)

Now, divide the numerator by the denominator:
\(\phi(519)=\frac{46800}{217} \approx 215.60\)

Since \(\varphi(n)\) should be an integer, we round it down to the nearest integer:
\(\phi(519) \approx 215\)

So, \(\varphi(519)\) is approximately 215.
5(i).State Chinese Remainder Theorem and find \(X\) for the given set ofcongruent equations using CRT
\(X=10(\bmod 2)\)
\(X=7(\bmod 9)\)
\(X=3(\bmod 5)(13\) Marks Apr/May 2023]
(ii)Find \(103{ }^{27} \bmod 467\)

6.State and prove Fermat's theorem.

Definition
Proof
Example problem
3.Explain RSA algorithm, perform encryption and decryption to the system with \(\mathrm{p}=7\) and \(\mathrm{q}=11 \mathrm{e}=17\) and \(\mathrm{M}=8\)

Definition
Algorithm
Problem

7.Users alice and bob use the diffie hellman key exchange technique with a common prime \(q=83\) and a primitive root \(\alpha=5\).
i) if Alice has a private key \(\mathbf{X A}=6\), what is Alice's public key YA? (6 marks)
ii) if bob has a private key \(\mathrm{XB}=10\) what is bob's public key YB? (6 marks)
iii) What will be shared secret key (8 marks)

\section*{Refer Class Notes}
8.Explain Diffie-Hellman Key exchange algorithm in detail(Apr/May 2017)

Or
Explain briefly about Diffie-Hellman Key exchange algorithm with its merits and demerits [Apr/May 2019]
* Definiton

\author{
* Algorithm \\ * Example Problem \\ * Merits and Demerits
}
9.With a neat sketch explain the Elliptic curve cryptography with an example[Apr/May 2018]
* Definition
* Mathematical Equation
* ECC Diffie Hellman KeyExchange
* Explanation
* Decryption
* Computational effort for CryptAnalysis
10.Why ECC is better than RSA?However, why it is not used widely?.Defind it? [Speed of RSA is reduced]

\section*{- The solution is Elliptic Curve Cryptography (ECC) \\ - Smaller key size equal security compared to RSA \\ - Reduced processing overhead}
11.Find the secret key shared between user \(A\) and user \(B\) usingDiffie Hellman algorithm for the following \(\quad q=353, \alpha(\) primitive root \()=3\)
, \(X_{A}=45\) and \(X_{B}=50\)
* Definition
* Formula
* Given Values
* To be find
* Refer Classwork Note Book
12.Describe RSA algorithm

Definiton
Algorithm
Explanation
Example Problem
13. Perform encryption and decryption using RSA algorithm for the following with \(\mathrm{p}=7\) and \(\mathrm{q}=11 \mathrm{e}=7 \mathrm{M}-9\).[Apr/May 2018]
* Definiton
* Algorithm
* Problem with both encryption and decryption
14. Explain Public Key Cryptography and when it is preferred?[Nov/Dec 2019]
* Definition
* Diagram Publickey cryptography
* Characteristics of Public key cryptosystems
* Components of PublicKey Cryptography
15. Demonstrate the Diffie Hellman key exchange methodology using
following key values : \(11 \mathrm{p}=, 2 \mathrm{~g}=, \mathrm{XA}=9,4 \mathrm{XB}=4[\mathrm{Nov} / \mathrm{Dec} 2021]\)
* Definition
* Formula
* Given Values
* To be find
* Refer Classwork Note Book
16.Diffie-Hellman key agreement is not limited to negotiating a key shared by only two participants. Any number of users can take part in an agreement by performing iterations of the agreement protocol and exchanging intermediate, Write the steps and formulas to be followed for DH key exchange between Alice, Bob, and Carol.[Nov/Dec 2021]

> Diffie Hellman Key Exchange Algorithm used to share key in symmetric Algorithm It is not an encryption algorithm It is used to exchange secret or symmetric Key Asymmetric encryption (public key \(f\) private key) is used to calculate key at sender \(f\) receiver side. Purpose - To generate a shared private key
Steps -
1) Assume prime number \(q\)
2) Select \(\alpha\) such that \(\alpha \Rightarrow\) primitive root of \(q\)
\(\alpha<q\)
\(E=-a\) is primitive root of \(P\)
if \(\left\{a^{1} \bmod p, a^{2} \bmod p \ldots a^{p 1} \bmod p\right\}\)
results in \(\{1,2,3 \ldots, p-1\}\)
3) Assume \(X_{A} \Rightarrow\) private key of user \(A\)
\[
x_{A}<q
\]
Calculate \(y_{A} \rightarrow\) public key of user \(A\)
\(y_{A}=\alpha^{x_{A}} \bmod q \quad\left\{x_{A}, y_{A}\right\} *\) user \(A\)
4) Assume \(X_{B} \Rightarrow\) private key of user \(B\) \(x_{B}<q\)
Calculate \(y_{B} \rightarrow\) public key of user \(B\)
\(\left.y_{B}=\alpha^{x_{0}} \bmod q \quad z x_{B} \cdot y_{B}\right\} \Rightarrow\) user \(B\)
5) Key Generation
User \(A\) User \(B\)
\(k=\left(y_{B}\right)^{x_{A}} \bmod q \quad k=\left(y_{A}\right)^{x_{B}} \bmod q\)
\[
\begin{aligned}
& \text { 1) } q=11 \\
& \text { 2) } \alpha=2 \\
& \text { 3) select } x_{A}<q, x_{A}=8 \\
& y_{A}=\alpha^{x_{A}} \bmod q \\
& y_{A}=2^{8} \bmod 11=3 \\
& \text { 4) Select } x_{B}=4 \\
& y_{B}=\alpha^{x_{B}} \bmod q \\
& y_{\theta}=2^{4} \bmod 11 \\
& y_{B}=5 \\
& \text { user } A=\left\{X_{A}=8, y_{A}=3\right\} \\
& \text { user } B=\left\{x_{\theta}=4 \quad y_{B}=5\right\} \\
& \text { 5) Key Generation } \\
& \text { user } A \text { (Sender) } \\
& k=\left(y_{B}\right)^{x_{A}} \bmod q \\
& K=\left(y_{A}\right)^{X_{B}} \bmod q \\
& k=5^{8} \bmod 11 \\
& k=3^{4} \bmod \quad 11 \\
& k=4 \\
& k=4
\end{aligned}
\]
17.(i) In a public-key system using RSA, you intercept the ciphertext \(\mathrm{C}=20\) sent to a user whose public key is \(\mathrm{e}=13, \mathrm{n}=77\). What is the plaintext M ? (7)
(ii) In an RSA system, the public key of a given user is \(\mathrm{e}=65, \mathrm{n}=2881\), What is the private key of this user?

\author{
\(*\) Definiton RSA \\ * Algorithm \\ * Given Problem \\ *What is plaintext \\ * What is private key
}

\section*{Part C Ouestion}

A Box contains gold coins. If the coins are equally divided among three friends, two coins are left over, If the coins are equally divided among five friends, three coins are left over If the coins are equally divided among seven friends, two coins are left over. If the box holds smallest number of coins that meets these conditions, how many coins are there? (Hint : Use Chinese Remainder Theorem).

\section*{Refer Class Notes}

Question No 2
(b) (i) Alice chooses 173 and 149 as two prime numbers and 3 as public key in RSA. Check whether the chosen prime numbers are valid or not?
(ii) Prove that Euler's Totient value of any prime number \((p)\) is \(p-1\) and the Euler's Totient value of the non-prime number (\(n\)) is \((p-1) \times(q-1)\) where \(p \times q\) are prime factor of \(n\).
(iii) Mr. Ram chooses RSA for encryption, and he chooses 3 and 7 are two prime numbers. He encrypt the given message (message given in English alphabets) by mapping \(\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3 . ., \mathrm{Z}=26\). Find atleast two problems in his implementation.

\section*{Question}

Alice chooses 173 and 149 as two prime numbers and 3 as public key in RSA. Check whether the chosen prime numbers are valid or not?
1. We choose e \(=3\)
2. We select primes \(p=173\) and \(q=149\) and check
- \(\operatorname{gcd}(e, p-1)=\operatorname{gcd}(3,172)=1 \Rightarrow 0 K\)
\(0 \operatorname{gcd}(e, q-1)=\operatorname{gcd}(3,148)=1 \Rightarrow 0 K\).
3. Thus we have \(n=p q=173 \times 149=25777\), and
\(\phi=(p-1)(q-1)=172 \times 148=25456\).
4. We compute \(d=e^{-1} \bmod \phi=3^{-1} \bmod 25456=16971\).
- Note that ed \(=3 \times 16971=50913=2 \times 25456+1\)
- That is, ed \(\equiv 1 \bmod 25456 \equiv 1 \bmod \phi\)
5. Hence our public key is \((n, e)=(25777,3)\) and our private key is \((n, d)=(25777,16971)\). We keep the values of \(p, q, d\) and \(\phi\) secret.

To encrypt the first integer that represents "ATT", we have
\(c=m^{e} \bmod n=1289^{3} \bmod 25777=18524\).
Overall, our plaintext ATTACK AT SEVEN is represented by the sequence of five integers \(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\) :
\(m_{-} i=(1289,821,47,518,16187)\)
We compute corresponding ciphertext integers \(c_{i}=m_{i}^{e} \bmod n_{\text {, }}\) (which is still possible by using a calculator, honest):
\(c_{1}=1289^{3} \bmod 25777=18524\)
\(c_{2}=821^{3} \bmod 25777=7025\)
\(c_{3}=47^{3} \bmod 25777=715\)
\(c_{4}=518^{3} \bmod 25777=2248\)
\(c_{5}=16187^{3} \bmod 25777=24465\)
We can send this sequence of integers, \(c_{i}\), to the person who has the private key.
\(c_{-} i=(18524,7025,715,2248,24465)\)

You should get the results:
\(m_{1}=18524^{16971} \bmod 25777=1289\)
\(m_{2}=7025^{16971} \bmod 25777=821\)
\(m_{3}=715^{16971} \bmod 25777=47\)
\(m_{4}=2248^{16971} \bmod 25777=518\)
\(m_{5}=24465^{16971} \bmod 25777=16187\)

To convert these integers back to the block of three letters, do the following. For example, given \(m=16187\),
```

16187\div27^2 = 16187\div729 = 22 rem 149, 22 -> 'V'
149\div27^1 = 149 \div27 = 5 rem 14, 5 5 'E'
14\div2\mp@subsup{7}{}{\prime}0=14\div1=14 rem 0, 14 }->\mathrm{ ' 'N'

```

Hence the integer \(m=16187\) represents the string "VEN".
Similarly, \(m=47\) is encoded as follows:
```

47\div27^2 = 0 rem 47, 0 -> SPACE;
47\div27^1 = 1 rem 20, 1 -> 'A';
20\div27^0 = 20 rem 0, 20 -> 'T'

```
giving the string "_AT".

\section*{Question}
(ii) Prove that Euler's Totient value of any prime number \((p)\) is \(p-1\) and the Euler's Totient value of the non-prime number (\(n\)) is \((p-1) \times(q-1)\) where \(p \times q\) are prime factor of \(n\).

\section*{Answer}
* Definition
* Three cases

\section*{UNIT IV - MESSAGE AUTHENTICATION AND INTEGRITY}
[QUESTION BANK]
PART - A
1.Name the four requirements defined by Kerberos[Nov/Dec 2022]

\section*{Requirements for Kerberos}

\section*{Secure}

An opponent does not find it to be the weak link.

\section*{Reliable}

The system should be able to back up another.

\section*{Transparent}

An user should not be aware of authentication
Scalable
The system supports large number of clients and servers
2.Difference between MAC and Hash Function?[Nov/Dec

2022]
\begin{tabular}{|c|c|c|}
\hline No & Hash Function & MAC \\
\hline 1 & A hash algorithm takes a single input like message and produces a "Hash" which helps to verify and check the integrity of the message. & A MAC algorithm takes two inputs one is a message and another is secret key which will produces a MAC, which helps to verify integrity and the authentication of message. \\
\hline 2 & Any change to input message produces different hash being generated. & Any changes to in message or the secret key will result in a different MAC being generated. \\
\hline 3 & Once the hash is generated which will not give any clue to the attacker about original content of the message. & Without secret key it is not possible for attacker to identifies and validate the correct MAC. \\
\hline 4 & Most popular message digest algorithm are MD5 and SHA-1. & Most popular MACs are MAC using DES in CBC mode ard HMAC. \\
\hline
\end{tabular}
3. What is meant by padding? And, why padding is required? [Nov/Dec 2021]
* Padding in cryptography refers to the process of adding extra bits or bytes to data before it is encrypted or processed by a cryptographic algorithm.
* Padding is an essential aspect of many cryptographic processes, ensuring that data is processed and encrypted in a secure and consistent manner.

In SSL, the padding added prior to encryption of user data is the minimum amount required so that the total size of the data to be encrypted is a multiple of the cipher's block length.

In TLS, the padding can be any amount that results in a total that is a multiple of the cipher's block length, up to a maximum of 255 bytes.
4. Draw functional diagram of RSA based Digital Signature.[Nov/Dec 2021]

(a) RSA approach
5.How is the security of a MAC function expressed? (NOV/DEC 2017)

The security of a MAC function expressed in terms of the probability of successful forgery with a given amount of time spent by the forger and a given number of message-MAC pairs created with the same key.
6.Mention the significance of signature function in Digital Signature Standard (DSS) approach. (NOV/DEC 2017)

A digital signature is represented in a computer as a string of binary digits. A digital signature is computed using a set of rules and a set of parameters such that the identity of the signatory and integrity of the data can be verified. An algorithm provides the capability to generate and verify signatures. Signature generation makes use of a private key to generate a digital signature. Signature verification makes use of a public key which corresponds to, but is not the same as, the private key.
7.Write a simple authentication dialogue used in Kerberos. (NOV/DEC 2017)
(1) \(\mathrm{C} \rightarrow \mathrm{AS}: \quad I D_{C}\left\|P_{C}\right\| I D_{V}\)
(2) \(\mathrm{AS} \rightarrow \mathrm{C}\) : Ticket
(3) \(\mathrm{C} \rightarrow \mathrm{V}: \quad I D_{C} \|\) Ticket

Ticket \(=E\left(K_{v},\left[I D_{C}\left\|A D_{C}\right\| I D_{V}\right]\right)\)
8.List any 2 applications of X .509 Certificates. (NOV/DEC 2017)
* Document signing and Digital signature.
* Web server security with the help of Transport Layer Security (TLS)/Secure Sockets Layer (SSL) certificates.
* Email certificates.
* Code signing.
* Secure Shell Protocol (SSH) keys.
* Digital Identities.
9.How a digital signature differs from authentication protocols? (APRIL/MAY 18)

A (digital) signature is created with a private key, and verified with the corresponding public key of an asymmetric key-pair.

Only the holder of the private key can create this signature, and normally anyone knowing the public key can verify it.

Digital signatures don't prevent the replay attack mentioned previously
Authentication Protocols used to convince parties of each other's identity and to exchange session keys.
Mutual Authentication
Protocols enable communicating parties to satisfy themselves mutually about each other's identity and to exchange session keys.
Problem of authenticated key exchange
Problems to Key issues are
* Confidentiality - to protect session keys and prevent masqueraded(make believe) and compromised.

\section*{Timeliness - to prevent replay attacks}
10.What is a hash in cryptography?[Apr/May 2018]

Or
Define the term Message digest[Nov/Dec 2018]
Hashing is the process of transforming any given value or a string of characters into another value.
This is usually represented by a shorter, fixed-length value or key that represents and makes it easier to find or employ the original string.

\section*{11.What is Digital Signature[Nov/Dec 2018]}
* A digital signature is an authentication mechanism that enables the sender of a message to attach a code that acts as a signature.
* Typically the signature is formed by taking the hash of the message and encrypting the message with the sender's private key.
The signature guarantees the source and integrity of the message
12.Contrast various SHA algorithms[Nov/Dec 2018]

SHA-0: The original version of the 160 -bit hash function published in 1993 under the name "SHA". It was withdrawn shortly after publication due to an undisclosed "significant flaw" and replaced by the slightly revised version SHA-1.

SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm.

SHA-2: A family of two similar hash functions, with different block sizes, known as SHA256 and SHA-512. SHA-256 uses 32-bit words where SHA-512 uses 64-bit words.

SHA-3: It supports the same hash lengths as SHA-2, and its internal structure differs significantly from the rest of the SHA family.

\section*{13.State the requirements of digital signature[Nov/Dec 2019]}
* The signature must be a bit pattern that depends on the message being signed.[Somewhat related to Message]
The signature must use some information unique to the sender, to prevent both forgery and denial.
* It must be relatively easy to produce the digital signature.
* It must be relatively easy to recognize and verify the digital signature.[verification must be simpler]
* It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message.
* It must be practical to retain a copy of the digital signature in storage.
14.Compare Direct and Arbitrated digital signature. (Understand) [NOV/DEC 19]
\begin{tabular}{|c|c|}
\hline Direct Digital Signature & Arbitrated Digital Signature \\
\hline \begin{tabular}{l}
- The Direct Digital Signature is only include two parties one to send message and other one to receive it. \\
- According to direct digital signature both parties trust each other and knows there public key. \\
- The message are prone to get corrupted and the sender can decines about the message sent by him any time.
\end{tabular} & \begin{tabular}{l}
- The Arbitrated Digital Signature includes three parties in which one sender, second is receiver and the third is arbiter who will becom the medium for sending and receiving message between them. \\
- The message are less prone to get corrupted because of timestam being included by default.
\end{tabular} \\
\hline
\end{tabular}

15.What entities constitute a full service in Kerberos environment?

A full service environment consists of a
i) Kerberos server, ii) Number of clients, and iii) Number of application servers
16.Draw functional diagram of RSA and DSS based Digital signature?[Nov /Dec 2021]

(a) RSA approach

(b) DSS approach
17.Define Replay Attack[Nov 2011]

Replay Attacks
A valid signed message is copied and later resent Examples of replay attacks
(i)Simple replay :The opponent simply copies the message and replays it later.
(ii)Repetition that can be logged

The opponent replay a time stamped message within a valid time window.
(iii) Repetition that cannot be detected

The attacker would have suppressed the original message from the receiver. Only the replay message alone arrives.

\section*{(iv)Backward replay without modification}

This is a replay back to the message sender itself.This is possible only if the sender cannot easily recognize the difference between the message sent and the message received based on the content.
18.How is the security of MAC is expressed?[Nov/Dec 2017]

Computation resistance: [Mac value differs if \(\mathbf{x} \neq \mathbf{x i}\).]
Given one or more text-MAC pairs (xi, \(\mathrm{C}_{\mathrm{K}}[\mathrm{xi}]\)), it is computationally infeasible to compute any text-MAC pair (\(\mathrm{x}, \mathrm{C}_{\mathrm{K}}(\mathrm{x})\)) for any new input \(\mathrm{x} \neq \mathrm{xi}\)
19. What do you mean by one way property in hash function? (APR/MAY 2011)(NOV/DEC 2012) The one way property of hash function indicates that it is easy to generate a code given a message, but virtually impossible to generate a message given a code. This property is important if the authentication technique involves the use of a secret value.
* For any given value h , it is computationally infeasible to find x such that \(\mathrm{H}(\mathrm{x})=\mathrm{h}-\) one way property.
* For any given block x , it is computationally infeasible to find \(\mathrm{y} \neq \mathrm{x}\) with \(\mathrm{H}(\mathrm{y})=\mathrm{H}(\mathrm{x})\) - weak collision resistance.
* It is computationally infeasible to find any pair (\(\mathrm{x}, \mathrm{y}\)) such that \(\mathrm{H}(\mathrm{x})=\mathrm{H}(\mathrm{y})\) - strong collision property
20. What are birthday attacks? (APR/MAY 2014)

If an encrypted 64 bit hash code C is transmitted with the corresponding unencrypted message M , then an opponent would need to find an \(M\) such that \(H\left(M^{\prime}\right)=H(M)\) to substitute another message to substitute another message and fool the receiver. Thus the user has to try about \(2^{63}\) combinations to find one that matches the hash code of the intercepted message. This is called as Birthday attack

\section*{PART - B QUESTIONS}
1.What is digital signature?Explain the key generation,signingand signature verification algorithm? Bring out the steps followed to create a digital signature[Nov/Dec 2022]
* Definition

\section*{Global Public-Key Components}
p prime number where \(2^{L-1}<p<2^{L}\)
for \(512 \leq L \leq 1024\) and \(L\) a multiple of 64; i.e., bit length of between 512 and 1024 bits in increments of 64 bits
q prime divisor of \((p-1)\), where \(2^{159}<q<2^{160}\), i.e., bit length of 160 bits
\(\mathrm{g}=h^{(p-1) / q} \bmod p\),
where \(h\) is any integer with \(1<h<(p-1)\) such that \(h^{(p-1) / q} \bmod p>1\)

\(\quad\) Signing
\(r=\left(g^{k} \bmod p\right) \bmod q\)
\(s=\left[k^{-1}(\mathrm{H}(\mathrm{M})+x r)\right] \bmod q\)
Signature \(=(r, s)\)

\section*{Verifying}
\(w=\left(s^{\prime}\right)^{-1} \bmod q\)
\(\mathbf{u}_{1}=\left[\mathbf{H}\left(\mathbf{M}^{\prime}\right) w\right] \bmod q\)
\(\mathrm{u}_{2}=\left(r^{\prime}\right) w \bmod q\)
\(v=\left[\left(g^{u 1} y^{u / 2}\right) \bmod p\right] \bmod q\) TEST: \(v=r^{\prime}\)
\[
\begin{array}{ll}
M & =\text { message to be signed } \\
\mathrm{H}(M) & =\text { hash of M using SHA-1 } \\
M^{\prime}, r^{\prime}, s^{\prime} & =\text { received versions of } M, r, s
\end{array}
\]

User's Per-Message Secret Number
\(k=\) random or pseudorandom integer with \(0<k<q\)

Figure 13.4 The Digital Signature Algorithm (DSA)

Figure 13.5 DSS Signing and Verifying
2. Many websites requires users to register before they can access information or services.Suppose that you register at such as website but when you return later you have forgotten your password,The website then asks you to enter your email and address which you do.Later you receive your original password via email.Discuss several security concerns with this approach to deal with forgotten password.[Nov/Dec 2022]

\section*{Answer}

Password Forgotten: You, as a user, visit a website where you have previously registered an account, but you've forgotten your password. You click on a "Forgot Password?" or similar link on the login page.

Email and Address Verification: The website prompts you to enter your email address. This step is crucial because the website needs to verify that you are the legitimate owner of the account and not someone trying to gain unauthorized access. Some websites might also ask for additional information, such as your registered address, to further confirm your identity.

Email Confirmation: After you enter your email address and, if required, your address, the website sends an email to the address associated with your account. This email typically contains a link or a code that you can use to reset your password.

Resetting Your Password: You check your email and find the message from the website. You click on the link or use the code provided to access a page where you can reset your password.

Setting a New Password: On the password reset page, you are usually prompted to enter a new password. You choose a new password that meets the website's security requirements.

Password Reset Confirmation: After successfully setting a new password, you receive a confirmation email informing you that your password has been reset.

Logging In: You can now return to the website's login page and use your newly set password to access your account.

This process is designed to be secure and user-friendly. It helps ensure that only the legitimate account owner can reset their password, as access to the associated email account is required. Additionally, it provides a means for users to regain access to their accounts when they forget their passwords, reducing the likelihood of being locked out of their accounts permanently. It's essential to follow password security best practices when setting a new password to keep your account safe.
3. Briefly explain the steps of message digest generation in Whirlpool with a block diagram.[Nov/Dec 2020]
* Whirlpool Hash Structure
* Block Cipher W
* Performance of Whirlpool
4. Explain PKI management model and its operations with the help of a diagram.[Nov/Dec 2020]

Figure 14.16 PKIX Architectural Model
Explanation about PKI

\section*{Question 5}

Consider a banking application that is expected to provide cryptographic functionalities. Assume that this application is running on top of another application wherein the end customers can perform a single task of fund transfer. The application requires cryptographic requirements based on the amount of transfer.
\begin{tabular}{|l|l|}
\hline Transfer amount & Cryptography functions required \\
\hline \(1-2000\) & Message digest \\
\hline \(2001-5000\) & Digital signature \\
\hline 5000 and above & Digital signature and encryption \\
\hline
\end{tabular}

Suggest the security scheme to be adopted in client and server side to accommodate the above requirements and justify your recommendations.
Solution
\begin{tabular}{|l|l|}
\hline Transfer Amount & Cryptography function required \\
\hline \(1-2000\) & \begin{tabular}{l}
Message digest-To verify the finger print of \\
the transaction.
\end{tabular} \\
\hline \(2001-5000\) & \begin{tabular}{l}
Digital Signature-To ensure the message \\
integrity and non-repudiation
\end{tabular} \\
\hline 5000 and above & \begin{tabular}{l}
Digital signature and encryption-To ensure \\
the message integrity and non-repudiation \\
and confidential.
\end{tabular} \\
\hline
\end{tabular}

If fund transfer amount upto 2000,we simply reauire a message digest to obtain and verify the fingerprint or integrity of the message. Here we use SSL to avoid attacks. This is the example of cryptography services.

If the transaction amount is in between 2000 to 5000 we require a digital signature to ensure not only message integrity but also non -repudiation. This is an example of authorization services.

At last, if the transaction amount is more than 5000 .we must not only sign a message but also encrypt it.This is a combination of authorization services and cryptography services.
6.Discuss Client Server Mutual authentication, with example flow diagram. (NOV/DEC 2016)

Or
What is Kerberos ?Explain how it provides authenticated service.[Apr/May 2019] Or
List the requirements of Kerberos[Nov 2021]
* Define Kerberos
* Requirements of Kerberos
* A simple authentication dialogue
* Using Authentication Server
* Diagram-Overview of Kerberos
* Using Ticket Granting Server
* Summary of Kerberos Message Exchange
7.Explain SHA512 in detail [Nov/Dec 2016]

Write steps involved in the generation of Message digest [Nov 2021]
Or
With a neat diagram.explain the steps involved SHA algorithm for encrypting a message with maximum length less than \(2^{128}\) bits and produces as output a 512-bit message digest.
[Nov/Dec 2017]

\section*{Definition}

Diagram -Message Digest Generation Using SHA-512
Processing Steps
Step 1 Append padding bits.
Step 2 Append length
Step 3 Initialize hash buffer
Step 4 Process message in 1024-bit (128-word) blocks
* Diagram SHA-512 Processing of a Single 1024 Bit Block
* Diagram Elementary SHA-512 Operation (single round)
* Diagram Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
8.How Hash function algorithm is designed? Explain their features and properties [Apr/May 2018]
* Define hash function
* Block diagram of hash function
* Basic uses of Hash function
* Requirements of Hash Function
* Security of Hash function
9.Explain briefly about the certification mechanisms in X.509[Apr/May 2018]

Or
Explain the format of the X. 509 certificate.
Or
(ii)Describe the elements of X509 Certificate.

Define X. 509
Diagram
Public Key Certificate Use

\section*{Summery of X. 509 CERTIFICATE}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Version} \\
\hline \multicolumn{2}{|c|}{Serial Number} \\
\hline \multicolumn{2}{|l|}{Signature Algorithm ID} \\
\hline \multicolumn{2}{|l|}{Issuer (CA) \(\times .500\) Name} \\
\hline \multicolumn{2}{|c|}{Validity Period} \\
\hline \multicolumn{2}{|l|}{Subject \(\times .500\) Name} \\
\hline \multirow[t]{2}{*}{Subject Public Key Info} & Algorithm ID \\
\hline & Public Key Value \\
\hline \multicolumn{2}{|r|}{Issuer Unique ID} \\
\hline \multicolumn{2}{|l|}{Subject Unique ID} \\
\hline \multicolumn{2}{|c|}{Extension} \\
\hline \multicolumn{2}{|l|}{CA Digital Signature} \\
\hline
\end{tabular}

Version of \(\times .509\) to which the Certificate conforms
A number that uniquely identifies the Certificate
The names of the specific Public Key algorithms that the CA has used to sign the Certificate (Ex.- RSA with SHA-1)

The identity of the CA Server who issued the Certificate
The period of time for which the Certificate is valid with start date and expiration date

The owner's identity with \(\times .500\) Directory format
The Public Key of the owner of the Certificate and the specific Public Key algorithms associated with the Public Key

Information used to identify the issuer of the Certificate Information used to identify the Owner of che Certificate Additional information like Alternate name, CRL Distribution Point (CDP)
The actual digital signature of the CA
* Obtaining a User's Certificate
* Revocation of certificates

\section*{10.Explain Elgammal Digital Signature Scheme[Nov/Dec 2018]}

ElGamal encryption scheme is designed to enable encryption by a user's public key with decryption by the user's private key. The ElGamal signature scheme involves the use of the private key for encryption and the public key for decryption that for a prime number \(q\), if \(\alpha\) is a primitive root of \(q\), then
\[
\alpha, \alpha^{2}, \ldots, \alpha^{q-1}
\]
are distinct \((\bmod q)\). It can be shown that, if \(\alpha\) is a primitive root of \(q\), then
1. For any integer \(m, \alpha^{m} \equiv 1(\bmod q)\) if and only if \(m \equiv 0(\bmod q-1)\).
2. For any integers, \(i, j, \alpha^{i} \equiv \alpha^{j}(\bmod q)\) if and only if \(i \equiv j(\bmod q-1)\).

As with ElGamal encryption, the global elements of ElGamal digital signature are a prime number \(q\) and \(\alpha\), which is a primitive root of \(q\). User A generates a private/public key pair as follows.
1. Generate a random integer \(X_{A}\), such that \(1<X_{A}<q-1\).
2. Compute \(Y_{A}=\alpha^{X_{A}} \bmod q\).
3. A's private key is \(X_{A}\); A's pubic key is \(\left\{q, \alpha, Y_{A}\right\}\).

To sign a message \(M\), user A first computes the hash \(m=\mathrm{H}(M)\), such that \(m\) is an integer in the range \(0 \leq m \leq q-1\). A then forms a digital signature as follows.
1. Choose a random integer \(K\) such that \(1 \leq K \leq q-1\) and \(\operatorname{gcd}(K, q-1)=1\). That is, \(K\) is relatively prime to \(q-1\).
2. Compute \(S_{1}=\alpha^{K} \bmod q\). Note that this is the same as the computation of \(C_{1}\) for ElGamal encryption.
3. Compute \(K^{-1} \bmod (q-1)\). That is, compute the inverse of \(K\) modulo \(q-1\).
4. Compute \(S_{2}=K^{-1}\left(m-X_{A} S_{1}\right) \bmod (q-1)\).
5. The signature consists of the pair \(\left(S_{1}, S_{2}\right)\).

Any user B can verify the signature as follows.
1. Compute \(V_{1}=\alpha^{m} \bmod q\).
2. Compute \(V_{2}=\left(Y_{A}\right)^{S_{1}}\left(S_{1}\right)^{S_{2}} \bmod q\).

The signature is valid if \(V_{1}=V_{2}\). Let us demonstrate that this is so. Assume that the equality is true. Then we have
```

$\alpha^{m} \bmod q=\left(Y_{A}\right)^{S_{1}}\left(S_{1}\right)^{S_{2}} \bmod q \quad$ assume $V_{1}=V_{2}$
$\alpha^{m} \bmod q=\alpha^{X_{A} S_{1}} \alpha^{K S_{2}} \bmod q$
$\alpha^{m-X_{A} S_{1}} \bmod q=\alpha^{K S_{2}} \bmod q$
$m-X_{\mathrm{A}} S_{1} \equiv K S_{2} \bmod (q-1)$
$m-X_{\mathrm{A}} S_{1} \equiv K K^{-1}\left(m-X_{\mathrm{A}} S_{1}\right) \bmod (q-1)$ substituting for $S_{2}$

```

For example, let us start with the prime field GF(19); that is, \(q=19\). It has primitive roots \(\{2,3,10,13,14,15\}\), as shown in Table 8.3. We choose \(\alpha=10\).

Alice generates a kev pair as follows:
1. Alice chooses \(X_{A}=16\).
2. Then \(Y_{A}=\alpha^{X_{A}} \bmod q=\alpha^{16} \bmod 19=4\).
3. Alice's private key is 16 ; Alice's pubic key is \(\left\{q, \alpha, Y_{A}\right\}=\{19,10,4\}\).

Suppose Alice wants to sign a message with hash value \(m=14\).
1. Alice chooses \(K=5\), which is relatively prime to \(q-1=18\).
2. \(S_{1}=\alpha^{K} \bmod q=10^{5} \bmod 19=3\) (see Table 8.3).
3. \(K^{-1} \bmod (q-1)=5^{-1} \bmod 18=11\).
4. \(S_{2}=K^{-1}\left(m-X_{\mathrm{A}} S_{1}\right) \bmod (q-1)=11(14-(16)(3)) \bmod 18=-374\) \(\bmod 18=4\).

Bob can verify the signature as follows.
1. \(V_{1}=\alpha^{m} \bmod q=10^{14} \bmod 19=16\).
2. \(V_{2}=\left(Y_{\mathrm{A}}\right)^{S_{1}}\left(S_{1}\right)^{S_{2}} \bmod q=\left(4^{3}\right)\left(3^{4}\right) \bmod 19=5184 \bmod 19=16\).

Thus, the signature is valid.

\footnotetext{

- IPSEC defines two protocols
- a. the Authentication Header (AH)
- b. Encapsulation Security Payload (ESP)
to provide authentication and for encryption for the packets at the IP level.
1.Authentication Header (AH) (provide source authentication \& data integrity but not privacy)
- AH protocol is designed to authenticate the source host \& to ensure the integrity of the payload carried in the IP packet.
- This protocol uses a hash function \& a symmetric key to create a message digest; the digest is inserted via the authentication header.
- The AH is then placed on the appropriate location, based on the mode i .e transport or tunnel.
- When an IP datagram carries an authentication header, the original value in the protocol of the IP header is replaced by the value 51.
- The addition of an authentication header follows following steps:
1. An AH is added to the payload with authentication data field set to 0 .
2. Padding may be added to make the total length ever for a particular hashing algorithm.
3. Hashing is based on the total packet. However only those fields of the IP header that do not change during transmission are included in the calculation of the message digest i.e authentication data.
4. The authentication data are inserted in the authentication header.
5. The IP header is added after changing the value of the protocol filed to 51.

\section*{Description of every field of AH protocol}
1.Next header: The 8 bit header field defines the type of payload carried by the IP datagrams (such as TCP , UDP, ICMP). The process copies the value of the protocol field in the IP datagram to this field. The value of the protocol field in the new IP datagram is now set to 51 to show that the packet carried an AH.
2.Payload length: It defined the length of the AH in 4 -byte multiples, but it does not include the first 8 bytes.
3.Security Parameter index : The 32 but SPI field plays the role of a virtual circuit identifier \& is the same for all packets sent during a connection called Security Association.
}
4.Sequence Number : A 32 bit sequence number provides ordering information for a sequence of datagrams. It prevents a playback. Sequence number is not repeated even if a packet is retransmitted.
5.Authentication data : This field is the result of applying a hash function to the entire IP datagram except for the fields that are changed during transit.
3. With the help of a neat diagram, explain wired and wireless TLS architecture.[Nov/Dec 2020]
Wireless TLS
WTLS Protocol Architecture
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
WTLS \\
Handshake \\
Protocol
\end{tabular} & \begin{tabular}{c}
WTLS Change \\
Cipher Spec \\
Protocol
\end{tabular} & \begin{tabular}{c}
WTLS Alert \\
Protocol
\end{tabular} & WTP \\
\hline \multicolumn{4}{|c|}{ WTLS Record Protocol } \\
\hline \\
WDP or UDP/IP \\
\hline
\end{tabular}
Figure 17.15 WTLS Protocol Stack

\section*{Wired TLS}
6.How does PGP provides confidentiality and authentication service for e-mail and file storage applications?Draw the block diagram and explain its components[Nov/Dec 2020]

(c) Confidentiality and authentication

8.Explain IP Security Architecture in detail

Define IPSecurity
Explain allthe components
9.Explain ENCAPSULATING SECURITY PAYLOAD in detail ESP Format

11.Explain WebSecurity in Detail
 * Definition
 * Web security considerations or How to Secure the Web Site
 * 1.Updated Softwares
 * 2.Beware of SQL injection
 * 3.Cross Site Scripting (XSS)
 * 4.Error Message
 * 5.Data Validation
 * 6.Passwords
 * Web Security Threats
 * Web Traffic Security Approaches
* Application proxy firewall
* Circuit level proxy firewall
11.Explain WebSecurity in Detail
* Definition
* Web security considerations or How to Secure the Web Site
* 1.Updated Softwares
* 2.Beware of SQL injection
* 3.Cross Site Scripting (XSS)
* 4.Error Message
* 5.Data Validation
* 6.Passwords
* Web Security Threats
* Web Traffic Security Approaches```

[^0]:
 The best known multiple letter encryption cipher is the playfair, which treats digrams in the plaintext as single units and translates these units into cipher text digrams. The playfair algorithm is based on the use of 5×5 matrix of letters constructed using a keyword.

 Let the keyword be "monarchy" .
 The matrix is constructed by

 - Filling in the letters of the keyword from left to right and from top to bottom
 - Duplicates are removed
 - Remaining unfilled cells of the matrix is filled with remaining alphabets in alphabetical order.

 The matrix is 5×5. It can accommodate 25 alphabets. To accommodate the 26 th alphabet I and J are counted as one character.

 | M | O | N | A | R |
 | :---: | :---: | :---: | :---: | :---: |
 | C | H | Y | B | D |
 | E | F | G | I/J | K |
 | L | P | Q | S | T |
 | U | V | W | X | Z |

 Rules for encryption

 - Repeating plaintext letters that would fall in the same pair are separated with a filler letter such as ' x '.
 - Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the right, with the first element of the row circularly following the last. For example, ar is encrypted as RM.
 - Two plaintext letters that fall in the same column are each replaced by the letter beneath, with the top element of the column circularly following the last. For example, mu is encrypted as CM.
 - Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or JM, as the encipherer wishes).

 ## Keyword

 | M | O | N | A | R |
 | :---: | :---: | :---: | :---: | :---: |
 | C | H | Y | B | D |
 | E | F | G | I / J | K |
 | L | P | Q | S | T |
 | U | V | W | X | Z |

 Plain Text: SWARAJ IS MY BIRTH RIGHT Insert X in Blank Spaces: SW AR AJ XI SX MY XB IR TH XR IG HT

