Department of EEE

UNIT – I INTRODUCTION								
PART – A								
1.	What is the advantage of per unit method over percentage method? (May							
	2017, Nov 2020)							
	The per unit method has an advantage over the percent method because the							
	product of two quantities expressed in per unit is expressed in per unit itself, but							
	the product of two quantities expressed in percent must be divided by 100 to							
	obtain result in percent.							
2.	What is the need for base values? (Nov/Dec 2018, Apr/May 2018)							
	The components or various sections of power system may operate at different							
	voltage and power levels. It will be convenient for analysis of power system if the							
	voltage, power, current and impedance ratings of components of power system							
	are expressed with reference to a common value called base value. Hence for							
	analysis purpose, a base value is chosen for voltage, power, current and							
	impedance ratings of the components are expressed as a percent of per unit of the							
	base value.							
3.	Mention the requirements of planning the operation of a power system.							
	(May 2018). (or) What are the needs of power system planning (Nov/Dec							
	2019) (Nov/Dec 2020)							
	To utilize the existing capacity in the best possible manner is of prime importance							
	and is particularly relevant in a developing economy. The steps taken in the							
	method of power system planning studies are,							
	1.Forecast of annual energy and power demand, 2. Load modeling 3. Generation							
	and choice of mixing the various types of generating station. 4.Optimization of							
	power plant characteristics 5. New substations and their capacity and location 6.							
	New power plants and their subdivision in the main areas 7. Network expansion							
	8. Optimization of equipment characteristics.							
4.	What is single line diagram? (Nov 2015, May 2016 & Dec 2021)							

EE350.	1 - Power System Analysis Department of EEE	2023-2024			
	A single line diagram is diagrammatic representation of power syst	tem in which			
	the components are represented by their symbols and the inter-	r connection			
	between them are shown by a single straight line (even though the	system is 3-			
	phase system). The ratings and the impedances of the compone	ents are also			
marked on the single line diagram.					
5.	What are the components of power system? (May 2012)				
	The components of power system are generators, power transform	ners, motors,			
	transmission lines, substation transformers, distribution transformers	and loads.			
6.	Define per unit value of an electrical quantity and write the o	equation for			
	base impedance for a three phase power system. (Dec 2017, Nov 2	015)			
	Per unit value of any quantity is defined as the ratio of actual quanti	ty to its base			
	quantity expressed an a decimal.				
$Per unit value = \frac{Actual value}{Base value}$					
The equation for base impedance for a three phase power system					
	Base impedance $Z_b = kV_b^2/MVA_b$				
7.	Write the equation for converting the p.u. impedance expressed	in one base			
	to another? (May 2016, Dec 2017)				
	$Z_{pu,New} = Z_{pu,old} X \left[\frac{KV_{b,old}}{KV_{b,new}} \right]^2 X \left[\frac{MVA_{b,new}}{MVA_{b,old}} \right]$				
8.	What are the advantages (needs) of per unit computation? (Nov14	4, 16)			
	i) Manufactures usually specify the impedance of a device or machin	ne in per unit			
	on the base of the name plate rating. ii) The p.u. values of widely di	fferent rating			
	machines lie within a narrow range, even though the ohmic values has a very				
	large range.iii) The p.u. Impedance of circuit element connected by	transformers			
	expressed on a power base will be same is if it is referred to eith	her side of a			
	transformer. iv) The p.u. impedance of a 3¢ transformer is indepe	endent of the			
	type of winding connection (Y or Δ)				
9.	How the loads are represented in reactance or impedance dia	gram? (Nov			
	2016, Nov 2020)				

EE35(01 - Power System Analysis Department of EEE 2023-2024					
	The resistive and reactive loads can be represented by any one of the following					
	representation.					
	i) Constant power representation, Load power $S = P + jQ$					
	ii) Constant current representation, Load Current $I = \sqrt{\frac{P^2 + Q^2}{ V }} \angle \delta - \theta$					
	iii) Constant impedance representation. Load impedance $Z = \frac{V^2}{P-jQ}$					
10.	A generator rated at 30MVA, 11KV has a reactance of 20% calculate its p.u					
	reactance for a base of 50 MVA and 10KV.					
	$X_{pu,new} = X_{pu} = 0.2 \text{ x} (11/10)^2 \text{ x} (50/30) = 0.403 \text{ pu}$					
11.	The base KV and base MVA of a 3-phase transmission line is 33KV and 10					
	MVA respectively calculate the base current and base impedance. (Dec 2021)					
	Base current, $I_{\rm b} = \frac{({\rm KVA})_{\rm b}}{\sqrt{3}{\rm KV}_{\rm b}} = \frac{({\rm MVA})_{\rm b} \times 1000}{\sqrt{3}{\rm KV}_{\rm b}} = \frac{10 \times 1000}{\sqrt{3} \times 33} = 175{\rm A}$					
	Base impedance, $Z_{b} = \frac{(KV_{b})^{2}}{MVA_{b}} = \frac{33^{2}}{10} = \frac{108.9\Omega}{108.9\Omega}$					
12.	What is impedance diagram? (April 2019)					
	The impedance diagram is the equivalent circuit of power system in which the					
	various components of power system are represented by their approximate or					
	simplified equivalent circuits. The impedance diagram is used for load flow					
	studies.					
13.	What is reactance diagram?					
	The reactance diagram is the simplified equivalent circuit of power system in					
	which the various components are represented by their reactance. The reactance					
	diagram can be obtained from impedance diagram if all the resistive components					
	are neglected. The reactance diagram is used for fault calculations.					
14.	What are the approximations made in impedance diagram? (Nov/Dec 2018,					
	April 2019).					
	i) The neutral reactance are neglected ii) Shunt branches in the equivalent circuits					
	of transformers are neglected iii) The resistance are neglected. iv) All static loads					
L						

EE350	- Power System Analysis Department of EEE 2023-2024					
	and induction motors are neglected. v) the capacitance of the transmission lines					
	are neglected					
15.	Give equations for transforming base KV on LV side to HV side					
	transformer.					
	Base KV on HT side = Base KV on LT side X $\frac{\text{HT voltage rating}}{\text{LT voltage rating}}$					
	Base KV on LT side = Base KV on HT side X $\frac{\text{LT voltage rating}}{\text{HT voltage rating}}$					
	LT - Low Tension or Low Voltage					
	HT- High Tension or High Voltage					
16.	What is bus?					
	The meeting point of various components in a power system is called as bus. The					
	bus is a conductor made of copper or aluminum having negligible resistance. The					
	buses are considered as points of constant voltage in a power system.					
17.	What are the disadvantages of per unit system?					
	The disadvantages of per unit system are some equations that hold in the unscaled					
	case are modified when scaled into per unit factors such as $\sqrt{3}$ and 3 are removed					
	or added in this method. Equivalent circuits of the components are modified					
	making them somewhat more abstract. Sometimes these shifts that are clearly					
	present in the unscaled circuit vanish in per unit circuit.					
18.	What are the methods available for forming bus impedance matrix?					
	(i) Form the bus impedance matrix and then take its inverse to get bus impedance					
	matrix.					
	(ii) Directly from the bus impedance matrix from the reactance diagram. This					
	method utilizes the techniques of modifications of existing bus impedance matrix					
	due to addition of new bus.					
19.	What are the representations of loads? (May 2014)					
	i) Constant power representation ii) Constant current representation iii) Constant					
	impedance representation					
20.	What are the advantages of per unit system? (May 2011)					

EE350	1 - Power System Analysis Department of EEE 2023-2024				
	a) Calculations are simple. b) It will be convenient for analysis of power system				
	if the voltage, power, current and impedance ratings of components of power				
	system are expressed with reference to a common value called base value				
21.	Draw a simple per-phase model for a cylindrical rotor synchronous machine.				
	May 2011)				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
22.	If the reactance in ohms is 15, find the p.u value for a base of 15KVA an				
	10KV? (May 2012)				
	$Z(pu) = \frac{Z \times MVA_b}{KV_b^2} = \frac{15 \times 15}{10^2} = 2.25$				
23.	Draw the equivalent circuit of a three winding transformer. (Nov 2012, May				
	2013) \downarrow_{1}^{1} \downarrow_{1}^{1} \downarrow_{1}^{1} \downarrow_{1}^{2} \downarrow_{1}^{2} \downarrow_{1}^{2} \downarrow_{1}^{2} \downarrow_{2}^{2} \downarrow_{3}^{2} \downarrow_{3}^{2} \downarrow_{3}^{2} \downarrow_{3}^{2}				
24.	What is meant by percentage reactance? (May 2013)				
	Percentage reactance of a transformer (or in general, a circuit) is the percentage				
	of phase voltage drop when full load current flows through it, i.e %X= (I X /				
	V)*100.				
25.	What are the functions of Modern power system? (Nov 2013)				
	The modern power system is a network of electric components which is used to				
	supply (generating station), transmit (transmission system) and distribute				

EE350	DI - Power System Analysis Department of EEE 2023-2024 (distribution system) the electrical power					
	(distribution system) the electrical power.					
26.	Name the diagonal and off diagonal elements of bus impedance matr					
	(Nov2013)					
	The diagonal elements are called as driving point impedances and off diagonal					
	elements are called as transfer impedances.					
27.	Draw the impedance diagram for the given single line representation of the					
	power system (May 2014).					
	$\overset{\text{Gen}}{\bigcirc} \overset{\overset{\overset{\overset{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom{\phantom$					
	$Z_{T_{1}}$ $Z_{T_{L}}$ $Z_{T_{2}}$ Z_{T					
28.	What are the main divisions of Power System?(Nov 2014)					
	The main divisions of power systems are :i) Generation ii) Transmission and iii)					
	Distribution.					
29.	What is meant by base quantities in per unit representation? (April 2019)					
	In the power systems analysis field of electrical engineering, a per-unit system is					
	the expression of system quantities as fractions of a defined base unit quantity.					
	Calculations are simplified because quantities expressed as per-unit do not change					
	when they are referred from one side of a transformer to the other.					
30.	Define bus incidence matrix. (Nov/Dec 2019) (Nov/Dec 2020)					
	In singular transformation method to find the Y_{bus} the matrix is derived					
	In general $Y_{bus} = [A] [Y_{primitive}] [A]^T$					
	Where A is defined as the bus incidence matrix.					
31.	Give the representation of an off nominal transformer in power system.					

EE.	3501 - Power System AnalysisDepartment of EEE2023-2024					
	Nov/Dec 2020)					
	Figure 1.3 (b) Transformer					
	R/2 X/2 R/2 X/2					
	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $					
	(i) π-Representation (ii) T-Representation					
	UNIT – II POWER FLOW ANALYSIS					
	<u>PART – A</u>					
]	1. What is power flow study or load flow study? (Nov 2014)					
	The study of various methods of solution to power system network is referred to as					
	load flow study. The solution provides the voltages at various buses, power					
	flowing in various lines and line-losses.					
2.	What is the need for load flow study? (Nov 2015, May 2016 & Nov 2017, Nov					
	2020)					
	The load flow study of a power system is essential to decide the best operation of					
	existing system and for planning the future expansion of the system. It is also					
	essential for designing a new power system.					
3.	What are the different types of buses in a power system?(May 2016, Nov 2017					
	& Dec 2021)					
	The buses of a power system can be classified into three types based on the					
	quantities being specified for the buses. The different types of buses are,(i) Load					
	bus or PQ bus (ii)Generator bus or voltage controlled bus or PV bus(iii)Slack bus					
	(or) swing bus (or) reference bus.					
4.	When the generator bus is treated as load bus? (Nov 2013, May 2014, Nov					
	2015, Nov 2018, Nov 2020)					
	If the reactive power of a generator bus violates the specified limit, then the					
	generator bus is treated as a load bus. The reactive power of that particular bus is					

EE.	3501 - Power System Analysis Department of EEE 2023-2024				
	equated to the limit it has violated and the previous iteration value of bus voltage is				
	used for calculating current iteration value.				
5.	What are the advantages and disadvantages of G-S method?				
	Advantages: i) Calculations are simple, so the programming task is less ii) the				
	memory requirement is less iii) Useful for small systems				
	Disadvantages: i) Requires large number of iterations to reach convergence. ii)				
	Not suitable for large systems iii) Convergence time increases with size of the				
	system				
6.	What are the advantages and disadvantages of N-R method? (Nov/Dec 2019)				
	Advantages: i) The N-R method is faster, more reliable and the results are accurate				
	ii) Requires less number of iterations for convergence. iii) The number of iterations				
	is independent of the size of the system.vi) Suitable for large size system.				
	Disadvantages: i) Programming is more complex ii) The memory requirement is				
	more iii) Computational time per iteration is higher due to large number of				
	calculations per iteration.				
7.	How the disadvantages of N-R method are overcome?				
	The disadvantages of large memory requirement in NR method can be overcome				
	by decoupling the weak coupling between P- δ and Q-V (i.e using de coupled load				
	flow algorithm). The large computational time per iteration can be reduced by				
	simplifying the decoupled load flow equations. The simplifications are made based				
	on the practical operating conditions of a power system.				
8.	How are the diagonal elements of Y _{bus} known as?				
	The diagonal elements of Y _{bus} are known as the short circuited driving point				
	admittance or self-admittance of the buses.				
9.	State the major steps involved in load flow studies?				
	The major steps involved in load flow studies are i) Mathematical modeling of the				
	power system; this would be a set of non-linear algebraic equations. ii) Solution of				
	the non-linear equations through an iterative technique.				
10.	Why acceleration factor is used in the G-S method? (May 2018)				
- ••					

EE3	2501 - Power System Analysis Department of EEE 2023-2024						
	The acceleration factor is used in G-S method to increase the rate of convergence						
	of the iterative process. The value of acceleration factor varies from 1.2 to 1.6.						
11.	What is the need of load flow solution?						
	The load flow solution is essential for designing a new power system and for						
	planning extension as well as operation of the existing one for increased power						
	demand.						
12.	What is load bus?						
	A load bus is one at which the active power and reactive power are specified. In						
	this bus, its voltage can be allowed to vary within permissible values. i.e $\pm 5\%$.						
	Also bus voltages phase angle is not very important for the load.						
13.	How the convergence of N-R method is speeded up?						
	The convergence of N-R method is speeded up using fast decoupled load flow						
	(FDLF) method. In FDLF, the weak coupling between P-V and Q- δ are decoupled						
	and the equations are further simplified equations are further simplified using the						
	practical operating conditions of the power system.						
14.	What are the advantages of decoupled method over N-R method?						
	i) This method is simple and computationally efficient than the N-R method.						
	ii) It requires less memory compared to N-R method.						
15.	What is the need for voltage control in a power system?						
	The various components of a power system (or equipments connected to power						
	system) are designed to work satisfactorily at rated voltages. If the equipments are						
	not operated at rated voltages then the performance of the equipments will be poor						
	and the life of the equipments will reduce. Hence the voltages at various points in						
	a power system should be maintained at rated value (specified value)						
16.	How the reactive power of a generator is controlled?						
	The reactive power of a generator is controlled by varying the magnitude and phase						
	of induced emf, which in turn varied by varying excitation. For an increase in						
	reactive power the magnitude of induced emf is increased and its phase angle is						
	decreased. For a reduction in reactive power the magnitude of induced emf is						

EE3	501 - Power Syst		EE 2023-2024					
	decreased and its phase angle is increased.							
17.	What is Slack or swing bus? (May 2011, Nov/Dec 2019, April 2019).							
	A bus is called swing bus when the magnitude and phase of bus voltage are							
	specified for it. The swing bus is the reference bus for load flow solution and it is							
	required f	required for accounting line losses. Usually one of the generator bus is selected as						
	the swing	bus.						
18.	What is	Jacobian matrix? How the ele	ements of Jacobian matrix are					
	ermined?	(May 2011, Nov 2016)						
	The matri	x formed the first order derivatives	s of load flow equations is called					
	Jacobian r	natrix (J). The elements of Jacobian n	natrix will change in every iteration.					
	In each ite	eration the elements of this matrix ar	e obtained by partial differentiating					
	the load f	low equations with respect to an unk	mown variable and then calculating					
	the first de	erivatives using the solution of previo	us iteration.					
`19.	What are	e the information that are obtai	ned from a power flow study?					
	(May2012, April 2019)							
	Power flow or load flow study is used to find the state variables of the power							
	system. the state variables of the power systems are voltage magnitude and angle.							
	By using t	his value the power flows in various l	lines and the losses are calculated.					
20.	Compare	Gauss-Seidal and Newton Raphso	n methods of load flow solutions.					
	(May 20	012, Nov 2015 & May 2017)						
	S. N	Gauss Seidal	Newton Raphson					
	1.	Reliable	More reliable					
	2. Require large number of iterations Faster. Require less nur							
	to reach convergence. It has linear literation to reach convergence							
	convergence characteristics has quadratic conv							
	characteristics.							
	3. Programming task is less Programming is more comp							
	4.	Suitable for small size system and	Suitable for large size system.					
	not suitable for large system. Number of iterations does							

EE3.	501 - Power Syst				
		Number iterations increases with	depend on size of the system.		
		increase in size.			
	5.	Memory required is less	Memory required is more.		
21.	Why pow	er flow analysis is made? (Nov2012)		
	Power flo	w analysis is performed to calculate	the magnitude and phase angle of		
	voltage at	the buses and also the active power	and reactive volt amperes flow for		
	the given	terminal or bus conditions. The var	riables associated with each bus or		
	node arei)	magnitude of voltage (v) ii) phase as	ngle of voltage (δ) iii) active power		
	(P) iv) rea	ctive volt amperes (Q).			
22.	What is a	cceleration factor? (Nov2012, May	2013 & Dec 2021)		
	The accele	eration factor is a numerical multiplie	er which is used to increase the rate		
	of converg	gence in an iterative process. The pre-	evious value at the bus is multiplied		
	by the acc	eleration factor to obtain a correction	to be added to previous values.		
23.	What is t	the need of slack bus? (May 2013,	May 2014, Nov 2016, Nov 2018,		
	May 2018) (Nov/Dec 2020)				
	The slack bus is needed to account for transmission line losses. In a power system,				
	the total p	ower generated will be equal to sun	n of power consumed by loads and		
	losses. In	a power system only the generated p	ower and load power are specified		
	for buses.	The slack bus is assumed to generate	the power required for losses. Since		
	the losses	are unknown the real and reactive po	ower are not specified for slack bus		
	.They are	estimated through the solution of load	l flow equations.		
24.	Why do Y	R _{Bus} used in load flow study instead	of Z _{Bus} ? (Nov 2013)		
	Y _{bus} is spa	rse matrix ie. zero elements are more	. So that the no of equations need to		
	be solved	to obtain the power flow solution is	less compared to using a Z_{bus} (full		
	matrix). U	sing Y _{bus} matrix is occupying less me	mory than using the Z_{bus} matrix.		
25.	Define vo	ltage controlled bus (Nov 2014)			
	These are	e the buses where generators are	connected. Therefore the power		
	generation	in such buses is controlled through	a prime mover while the terminal		
1					

EE3:	501 - Power System		Department of EEE	2023-2024		
	constant through turbine-governor control and keeping the bus voltage con					
	using automatic voltage regulator, we can specify constant P_{Gi} and $ V_i $ for the					
	buses. This i	s why such buse	s are also referred to as P-V	buses. It is to be noted		
	that the read	ctive power sup	plied by the generator Q_{Gi} d	epends on the system		
	configuration	and cannot be s	pecified in advance. Furtherm	ore we have to find the		
	unknown ang	gle δ_i of the bus v	oltage.			
26.	Why is Bus	impedance mat	trix preferred for fault anal	ysis? (May 2015) (or)		
	The Z- bus 1	method is very s	suitable for fault studies rat	her than Y bus. Why?		
	(Nov/Dec 202	20)				
	Bus impedand	ce matrix is pre	ferred for the fault analysis	because fault analysis		
	required full n	natrix for calcula	ting line flows in all the lines.	The admittance matrix		
	is sparse in na	ture, so it is not p	preferred for fault analysis.			
27.	Write the qu	antities that are	associated with each bus in	a system. (May 2017)		
		Bus type	Quantities specified	Quantities to be		
				obtained		
		Slack bus	V , δ	P,Q		
		Load bus	P,Q	V , δ		
		Generator bus	P, V	Q, δ		

	UNIT – III FAULT ANALYSIS - BALANCED FAULT				
	PART – A				
1.	1. What is Short Circuit MVA and how it is calculated? (May 2015, Nov 2016 &				
	Dec 2021)				
	The short circuit capacity or the short circuit MVA at a bus is defined as the				
	product of the magnitudes of the rated bus voltage and the fault current. S.C MVA				
	capacity of the circuit breaker = $\sqrt{3}$ x pre fault voltage in KV x S.C current in				
	KA.				
2.	How the shunt and series fault are classified? (Nov, 2016)				

E	E3501 - Power System Analysis Department of EEE 2023-2024
	SERIES FAULT: (a) One open conductor fault (b) Two open conductor fault
	SHUNT FAULT: (a) Symmetrical or balanced fault (i) Three phase Fault (LLLG)
	(b) Unsymmetrical or unbalanced fault (i) Line to line fault (LL) (ii) Line to
	ground fault (LG) (iii) Double line to ground fault. (LLG).
3.	What are the factors to be considered for selecting the C.B.?
	The factors to be considered in selecting a circuit breaker for a protection scheme
	are: Normal operating voltage, Momentary, interrupting current. Speed of the
	breaker and S.C interrupting MVA.
4.	What you mean by symmetrical faults? (Nov 2014, May 2016, Nov 2017, May
	2018, Nov/Dec 2019).
	The fault is called symmetrical fault if the fault current is equal in all the phases
	and the phase difference between any two phases is equal. A symmetrical fault is a
	fault where all phases are affected so that the system remains balanced
5.	What you mean by doubling effect?
	If a symmetrical fault occurs when the voltage wave is going through zero then the
	maximum momentary short circuit current will be double the value of maximum
	symmetrical short circuit current. The first peak of the resultant current will
	become twice the peak value of the final steady current. This effect is called as
	doubling effect.
6.	What you mean by transient and sub transient reactance? (May 2018)
	X_d (transient reactance) is the ratio of no load emf and the transient symmetrical
	r.m.s current.
	X _d "(sub transient reactance) is the ratio of no load emf and the sub transient
	symmetrical r.m.s current.
7.	What is the application of transient reactance?
	The transient and sub transient reactance helps in calculating the interrupting and
	maximum momentary short circuit currents.
8.	Give the various assumptions made for fault analysis. (May 2018, April 2019)
	The assumptions made in analysis of faults are: i) Each synchronous machine

El	E3501 - Power System Analysis Department of EEE 2023-2024
	model is represented by an e.m.f behind a series reactance ii) In the transformer
	models the shunt that account for core loss and magnetizing components are
	neglected.iii) In the transmission line models the shunt capacitances are neglected.
	iv)All series resistances in generators, transformers, lines are neglected. v) In the
	normal operating conditions the pre fault voltage may be considered as 1.0 p.u.vi)
	Load impedances are neglected; hence the pre fault system may be treated as
	unloaded. vii) As the pre fault currents are much smaller than the post fault
	currents the pre fault currents can be neglected.
9.	Name any methods of reducing short circuit current.
	By providing neutral reactance and by introducing a large value of shunt reactance
	between buses.
10.	What is the reactance used in the analysis of symmetrical faults on the
	synchronous machines as its equivalent reactance.
	i) Sub transient reactance $X_d^{"}$ ii) Transient Reactance $X_d^{'}$ iii) Synchronous
	reactance X _d
11.	11. What is synchronous reactance?
	It is the ratio of induced emf and the steady state r.m.s current. $X_d = E_g / I$
	It is the sum of leakage reactance and the armature reaction reactance. It is given
	by $X_d = X_l + X_a$,
	Where, X_d = Synchronous reactance. X_l = Leakage reactance & X_a = Armature
	reaction reactance.
12.	What are the causes of fault in power system. (May 2015)
	A fault may occur on a power system due to a number of reasons. Some of the
	causes are (i)Insulation failure of the system, (ii) Falling of a tree along a line, (iii)
	Wind and ice loading on the transmission lines, (iv)Vehicles colliding with
	supporting structures, (v) Overloading of underground cables, (vi)Birds shorting
	the lines.
13.	Name the main differences in representation of power system for load flow
	and short circuits studies

El	E3501 - Pa			2023-2024
	S.N	Load flow studies	Short circuit studies	
	1	The resistances and reactances	The resistances are neglected	
		are considered		
	2	To solve load flow analysis, the	To solve load flow analysis, the	
		bus admittance matrix is used	bus impedance matrix is used	
	3	It is used to determine the exact	Prefault voltages are assumed to	_
		voltages and currents	be 1 p.u and the prefault current	
			can be neglected	
14.	What	t is the reason for transients during	g short circuits?	
The fault or short circuits are associated with sudden change in currents		with sudden change in currents. I	Most of	
	the co	omponents of the power system have	ve inductive property which oppo	ses any
	sudde	n change in currents and so the f	faults (short circuit) are associate	ed with
	transi	ents.		
15.	What is the significance of transient reactance in short circuit studies? (May			? (May
	2017)			
	The tr	ransient reactance is used to estimate	e the transient value of fault current	t. Most
	of the	circuit breakers open their contacts	only during this period. Therefor	e, for a
	circui	t breaker used for fault clearing, its	interrupting short - circuit rating	should
	be less than the transient fault current.			
16.	What	t is the significance of sub - trans	ient reactance in short circuit s	tudies?
	(May	2017, Nov 2018, Nov 2020)		
	The sub - transient reactance is used to estimate the initial value of fault current			
immediately on the occ		diately on the occurrence of the faul	t. The maximum momentary shore	t circuit
	currer	nt rating of the circuit breaker used	for protection or fault clearing sh	ould be
	less th	nan this fault clearing value.		
17.	How	to conduct fault analysis of a powe	er system network?	
	The fa	ault current and voltages in the vari	ous part of the system can be dete	rmined
	by an	y one of the following methods:	By using KVL & KCL method	, using
	equiv	alent circuit representation and by us	sing bus impedance matrix	
L	1			

alts at various locations in the system are commonly referred as fault culations. ention the objectives of short circuit studies or fault analysis. (May 2011,		
ady state periods. The currents in the various parts of the system and in the fault e different in these periods. The estimation of these currents for various types of alts at various locations in the system are commonly referred as fault culations.		
e different in these periods. The estimation of these currents for various types of alts at various locations in the system are commonly referred as fault culations. ention the objectives of short circuit studies or fault analysis. (May 2011,		
alts at various locations in the system are commonly referred as fault culations. ention the objectives of short circuit studies or fault analysis. (May 2011,		
culations. ention the objectives of short circuit studies or fault analysis. (May 2011,		
ention the objectives of short circuit studies or fault analysis. (May 2011,		
ov 2012, Nov2014, Nov 2016, Nov 2018 & Dec 2021) (or) What is the need of		
Nov 2012, Nov2014, Nov 2016, Nov 2018 & Dec 2021) (or) What is the need of		
ort circuit analysis? (Dec 2019).		
e short circuit studies are essential in order to design or develop the protective		
nemes for various parts of the system. The protective scheme consists of current		
d voltage sensing devices, protective relays and circuit breakers. The selection or		
oper choice of these mainly depends on various currents that may flow in the		
Ilt conditions.		
rite down the balanced and unbalanced faults occurring in a power system.		
lay 2011)		
ALANCED FAULT:3 phase short circuit fault		
NBALANCED FAULT: Single line to ground fault, line to line fault and double-		
e to ground fault.		
stinguish symmetrical and unsymmetrical fault. (Nov 2012, May 2013)		
e fault is called Symmetrical fault if the fault current is equal in all the		
ases.eg. 3ϕ short circuit fault. The fault is called unsymmetrical fault if the fault		
rrent is not equal in all the three phases. eg. i) single line to ground fault ii) line		
line fault iii) double line to ground fault iv) open conductor fault		
hat is meant by fault level? (May 2013, April 2019) (Nov/Dec 2020)		
relates to the amount of current that can be expected to flow out of a bus in to a 3		
ase fault. Fault level in MVA at bus $i = V_{i pu nominal} * I_{i pu fault} * S_{3\varphi base}$.		
ve the frequency of various faults occurrence in ascending order (Nov 2013,		
ay 2014 & May 2017)		

	C3501 - Power System Analysis Types of Faults	Department of EEE 2023-202 Relative Frequency of Occurrence of
		Faults
	3 phase fault	5%
	Double Line to Ground Fault	10%
	Line to Line Fault	15%
	Single Line to Ground Fault	70%
24.	Define bolted fault. (May 2014, Ma	ay 2016 & Nov 2017, Nov 2020)
	A fault represents a structural netwo	ork change equivalent with that caused by the
	addition of impedance at the place of	of the fault. If the fault impedance is zero, the
	the fault is referred as bolted or soli	d fault.
25.	For a system, the bus imp	edance matrix was found to be Z
	$\begin{bmatrix} 0.0450 & 0.0075 & 0.030 \\ j & 0.0075 & 0.06375 & 0.030 \end{bmatrix}$. The impedat	nces are in pu. A three phase symmetrica
	$\begin{bmatrix} 0.0075 & 0.00575 & 0.050\\ 0.030 & 0.030 & 0.0210 \end{bmatrix}$	
	0.030 0.030 0.0210	ult impedance of $\mathbf{Z}_{\mathbf{f}} = \mathbf{j0.19}$ pu. Find out the
	[0.030 0.030 0.0210] fault occurs at bus 3 through a fa	ult impedance of Z _f = j0.19 pu. Find out the g zero prefault current. (May 2015).
	[0.030 0.030 0.0210] fault occurs at bus 3 through a fa	
	[0.0300.0300.0210]fault occurs at bus 3 through a farpost fault voltage at bus 2 assumin	
	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a far post fault voltage at bus 2 assumin Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$	ng zero prefault current. (May 2015).
	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a far post fault voltage at bus 2 assumin Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1 \angle 0^\circ}{j0.0210 + j}$	ing zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a far post fault voltage at bus 2 assumin Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1 \angle 0^\circ}{j0.0210 + j}$ The post	ag zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage -j4.7393) = 1 - 0.302 = 0.698 pu
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a far post fault voltage at bus 2 assumin Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1 \angle 0^\circ}{j0.0210 + j}$ The post $V_2(0) - Z_{23}I_3(f) = 1 \angle 0^\circ - (j0.06375)(-100)$ What is direct axis reactance? (De	ag zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage $-j4.7393) = 1 - 0.302 = 0.698 pu$ c 2015)
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a fault occurs at bus 3 through a fault post fault voltage at bus 2 assuming Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1 \angle 0^\circ}{j0.0210 + j}$ The post $V_2(0) - Z_{23}I_3(f) = 1 \angle 0^\circ - (j0.06375)(-1000)$ What is direct axis reactance? (Deen the direct axis is defined as the direct axis is	in a given prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage -j4.7393) = 1 - 0.302 = 0.698 pu c 2015) in along the rotor that the field winding
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a fault occurs at bus 3 through a fault post fault voltage at bus 2 assuming Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1 \angle 0^\circ}{j0.0210 + j}$ The post $V_2(0) - Z_{23}I_3(f) = 1 \angle 0^\circ - (j0.06375)(-1000)$ What is direct axis reactance? (Deen the direct axis is defined as the direct axis is defined as the direct axis is defined as the direct axis magnetic flux to flow the direct axis flow to flow the direct axis magnetic flux to flow the direct axis magnetic flux to flow the direct axis flow to flow the direct axis magnetic flux to flow the direct axis flow to flow to flow to flow the direct axis flow to fl	ag zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage -j4.7393) = 1 - 0.302 = 0.698 pu
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a fault occurs at bus 3 through a fault post fault voltage at bus 2 assumines Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1\angle 0^\circ}{j0.0210 + j}$ The post $V_2(0) - Z_{23}I_3(f) = 1\angle 0^\circ - (j0.06375)(-1000)$ What is direct axis reactance? (Deee The direct axis is defined as the direct axis direct axis direct axis direct axis direct axis direct axis direct a	ag zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage -j4.7393) = 1 - 0.302 = 0.698 pu c 2015) frection along the rotor that the field winding w and also it is defined as the reactance offered
26.	$\begin{bmatrix} 0.030 & 0.030 & 0.0210 \end{bmatrix}$ fault occurs at bus 3 through a fault occurs at bus 3 through a fault post fault voltage at bus 2 assumines Solution: $I_k(F) = \frac{V_k(0)}{Z_{kk} + Z_f}$ $I_3(F) = \frac{V_k(0)}{Z_{33} + Z_f} = \frac{1\angle 0^\circ}{j0.0210 + j}$ The post $V_2(0) - Z_{23}I_3(f) = 1\angle 0^\circ - (j0.06375)(-1000)$ What is direct axis reactance? (Deee The direct axis is defined as the direct axis direct axis direct axis direct axis direct axis direct axis direct a	ing zero prefault current. (May 2015). $\overline{0.19} = -j4.7393$ fault voltage -j4.7393) = 1 - 0.302 = 0.698 pu c 2015) inection along the rotor that the field winding w and also it is defined as the reactance offered to f armature mmf is directed along the direct ap length is minimum and hence the reluctance

EE	EE3501 - Power System AnalysisDepartment of EEE2023-2024			
	The rank of the faults based on the severity is listed below,			
	• Three phase symmetrical fault	:		
	• Double line to ground fault			
	• Line to line fault			
	• Single line to ground fault			
28.	28. Write the four ways of adding an impedance to an existing system so			
	modify Z_{Bus} matrix. (April 2019).			
	1. Adding a branch of impedance	Z_b from a new bus p to the refere	ence bus. 2.	
	Adding a branch of impedance Z_b f	rom a new bus p to an existing bus.	3. Adding a	
	branch of impedance Z_b from an e	xisting bus q to the reference bus. 4	4. Adding a	
	branch of impedance Z_b between tw	o existing buses p and q.		

UNIT – IV FAULT ANALYSIS –UNBALANCED FAULT

PART – A	A (C301.4)
----------	------------

1. Name the faults involving ground.

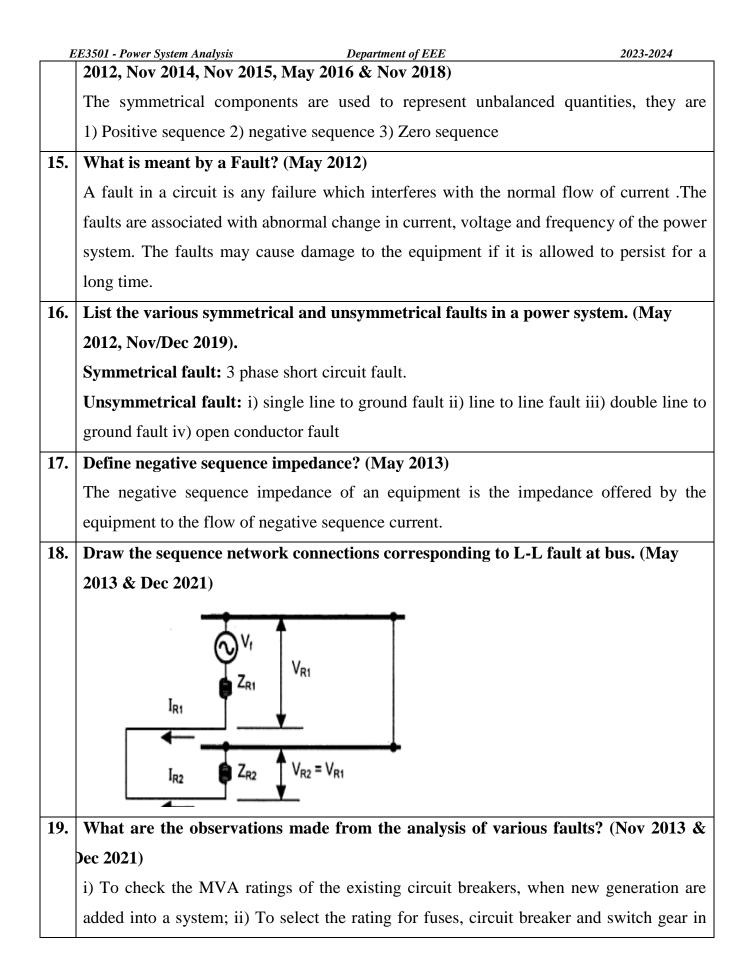
The faults involving ground are: single line to ground fault ii) double line to ground fault iii) Three phase fault

2. Define positive sequence impedance. (Nov/Dec 2019).

The positive sequence impedance of equipment is the impedance offered by the equipment to the flow of positive sequence currents.

3. In which fault the negative and zero sequence currents are absent? (April 2019)In three phase fault the negative and zero sequence currents are absent.

4. What are the boundary condition in line-to-line fault? The boundary condition for the line-to-line fault between the phases b and c is given below, $I_a=0$; $I_b+I_c=0$; $V_b=V_c$


5. Write down the boundary condition in double line to ground fault?

The boundary condition for the double line-to ground fault between the phases b and c to

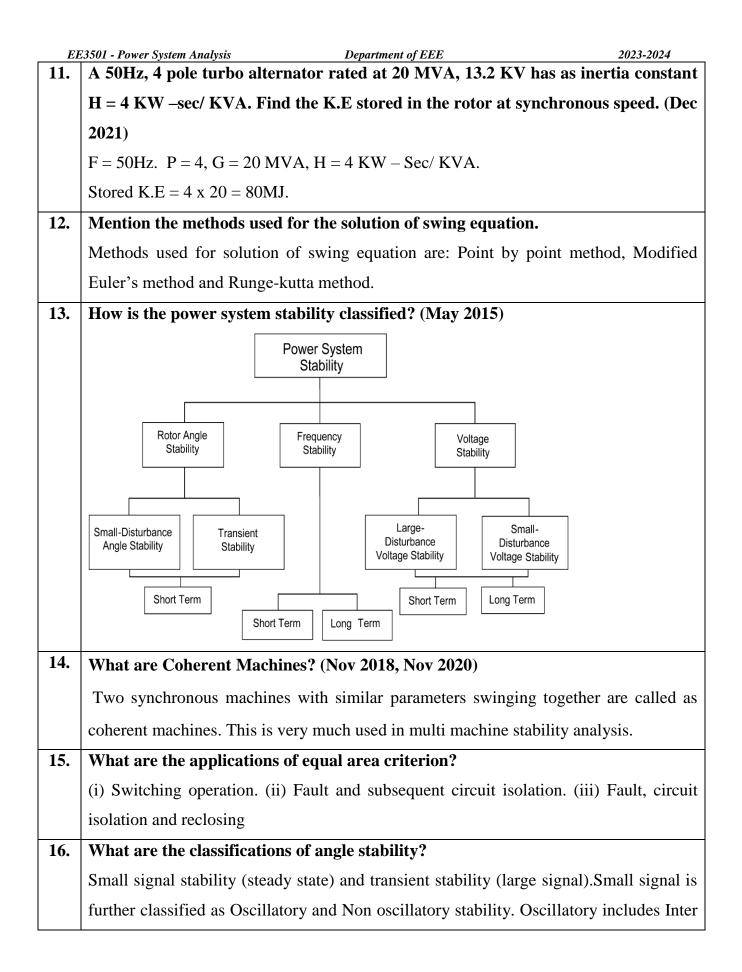
the ground is given below, $I_a=0$; $V_b=0$; $V_c=0$

6. Give the boundary condition for the 3-phase fault.

E	E3501 - Power System AnalysisDepartment of EEE2023-2024		
	The boundary condition for the symmetrical three phase fault between tall the three		
	phases given below, $I_a + I_b = I_c=0$; $V_a=V_b=V_c=0$		
7.	Name the fault in which positive, -ve and zero sequence component currents are		
	equal. (May 2012)		
	In single line to ground fault the +ve, -ve and zero sequence component currents are		
	equal.		
8.	Write a short notes on Zero sequence network.		
	The impedance or the reactance diagram formed by using zero sequence impedance is		
	called Zero sequence network.		
9.	Write a short notes on negative sequence network.		
	The impedance or the reactance diagram formed by using negative sequence impedance		
	is called Negative sequence network.		
10.	Write a short notes on positive sequence network.		
	The impedance or the reactance diagram formed by using positive sequence impedance is		
	called Positive sequence network.		
11.	How will you express positive, negative and zero – sequence impedances of Y –		
	connected loads?		
	Positive sequence impedance $Z^1 = Z_s + 3Z_n + 2Z_m$.		
	Negative sequence impedance $Z^2 = Z_s - Z_m$		
	Zero sequence impedance $Z^0 = Z_s - Z_m$ Where, $Z_s =$ self impedance of Y - connected		
	load, Z_n = load neutral impedance Z_m = Mutual impedance.		
12.	Define unsymmetrical fault.		
	The fault is called unsymmetrical fault if the fault current is not same in all the three		
	phases. It is also called as asymmetrical fault is defined as a fault that affects one or two		
	phases of a three-phase system		
13.	What is sequence network? (May 2011, Nov 2014)		
	The network which is used to represent the positive, negative and zero sequence		
	components of unbalanced system is called as sequence network		
14.	What are the symmetrical components of a three phase system? (May 2011, Nov		

E	E3501 - Power System AnalysisDepartment of EEE2023-2024			
	addition to setting up of protective relays; iii) To determine the magnitudes of currents			
	flowing throughout the power system at various time intervals after a fault occurs.			
20.	Write the boundary conditions for single line to ground fault. (Nov 2013)			
	The boundary condition for the single line to ground fault between the phase a to the			
	ground is given as, $Va = 0$; $I_b = I_c = 0$			
21.	What are the features of zero sequence current?(May 2014 & Nov 2017)			
	As zero sequence currents in three phases are equal and of same phase, three systems			
	operate like single phase as regards zero sequence currents. Zero sequence currents flow			
	only if return path is available through which circuit is completed.			
22.	Write the symmetrical component current of phase 'a' in terms of 3¢ currents.			
	(May2016, Nov 2018)			
	$I_{a0} = \frac{1}{3} [I_a + I_b + I_c] \qquad I_{a1} = \frac{1}{3} [I_a + aI_b + a^2I_c] \qquad I_{a2} = \frac{1}{3} [I_a + a^2I_b + aI_c]$			
23.	State the reason why, the negative sequence impedance of a transmission line is			
	taken as equal to positive sequence impedance of the line. (May 2015).			
	A transmission line is a passive and bilateral device. By passive, we mean there are no			
	voltage or current sources present in the equivalent model of a transmission line. Bilateral			
	means the line behaves the same way regardless of the direction of the current. Note that			
	although a single transmission line is bilateral. Because of a transmission line's passive			
	and bilateral properties, the phase sequence of the applied voltage makes no difference,			
	as a-b-c (positive-sequence) voltages produce the same voltage drops as a-c-b (negative-			
	sequence) voltages. This means that the positive- and negative-sequence impedances of a			
	transmission line are identical, provided that the line is transposed.			
24.	What is sequence Operator? (Nov 2015)			
	In balanced problem, to find the relationship between phase voltages and phase currents,			
	we use sequence operator. An operator which will turn a phasor through 120 degree in			
	three phase problems. This operator is called as ' a ' operator.			
25.	Why the neutral grounding impedance Z_n appears as $3Z_n$ in zero sequence			
	equivalent circuit? (Nov 2016)			
	If the neutral of a transformer is grounded through a grounding impedance Z^- n, then, the			

	3501 - Power System AnalysisDepartment of EEE2023-2024		
t	otal zero-sequence equivalent impedance to be used in the equivalent circuit is $Z^- 0$ total		
=	$= Z^{-} 0 + 3Z^{-} n$. This is due to the fact that the neutral current is 3 times the zero-		
s	equence current per phase.		
26. H	Express the unbalanced voltages in terms of symmetrical components. (May 2017)		
	$V_a = [V_{a0} + V_{a1} + V_{a2}]$		
	$V_{b} = [V_{a0} + aV_{a2} + a^{2}V_{a1}]$		
V	$V_{\rm c} = [V_{\rm a0} + {\rm a}^2 V_{\rm a2} + {\rm a} V_{\rm a1}]$		
V	Where, V _a , V _b , V _c – Unbalanced phase voltages		
	V_{a0} , V_{a1} , V_{a2} – Symmetrical components of phase'a'		
27. I	Draw the zero-sequence network of Y/Δ transformer with neutral ungrounded.		
(May 2017)		
	1°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	••Ref.bus		
28. H	Explain the concept of sequence impedances and sequence networks.		
S	Sequence impedances and sequence networks are the fault analyzing and calculating		
p	parameters in power system networks. Sequence impedances are of three types. They are		
p	positive, negative and zero sequence impedances. The sequence impedances are the		
i	impedances offered by the device or components to respective sequence current. The		
s	ingle phase equivalent circuit of power system formed using impedance of any one		
s	equence only is called sequence circuit or sequence network.		
29. I	Draw the zero sequence impedance equivalent circuit for Δ - Δ type three phase		
t	ransformers. April 2019		
	26		
	Both have		
	Circulating current		
Γ	Ref		
30. V	What are the advantages of symmetrical components? (Nov/Dec 2020)		


E	E3501 - Power System Analysis	Departm	ent of EEE	202	23-2024
	phasor. Very complex	unbalanced phasor	analysis can	be performed easily	by using
	symmetrical componen	ts. Systematic comp	puter analysis	is possible using syn	mmetrical
	components.				
31.	Name the faults in which zero sequence currents are absent. (Nov/Dec 2020))
	The faults in which	h zero sequence cu	irrents are aba	sent are Line-to-Line	fault and
	Three-phase fault.				

UNIT-V STABILITY ANALYSIS PART – A (C301.5)

1. Define Dynamic stability of a power system. Dynamic stability is the stability given to an inherently unstable system by automatic control devices and this dynamic stability is concerned with small disturbances lasting for times of the order of 10 to 30 seconds. 2. Define the inertia constants M & H. Angular momentum (M) about a fixed axis is defined as the product of moment of inertia about that axis and the associated angular velocity. $M = I. \omega$ watt/rad/Sec².Inertia constant (H) is the K.E in Mega joules to the three phase MVA rating of the machine. 3. Define load angle of a generator. Load angle:- This is the angle between the generated e.m.f or the supply voltage (E) and the terminal voltage. This angle is also called as torque or power angle of the machine. State equal area criterion of stability. (May 2017 & Nov 2017), Nov/Dec 2019 4. The system is stable if the area under accelerating power (Pa) - δ curve reduces to zero at some value of δ . In other words, positive area under Pa - δ curve must be equal to the negative area and hence the name equal area criterion of stability. What are limitations of equal area criterion? 5.

The limitations of equal area criterion are: i) The critica clearing time cannot be calculated even though the critical clearing angle is known. Hence numerical methods

El	E3501 - Power System Analysis Department of EEE 2023-2024				
	such as Runge-kutta method, point by point or Euler's method are employed. ii) It's a				
	more simplified approach.				
6.	If two machines with inertia's H_1 , H_2 are swinging together, what will be the inertia of the equivalent machine?				
	$H_s = \frac{H_1G_1 + H_2G_2}{G_s}$				
	H_1 and H_2 is the Inertia constant of M_1 and M_2 ; G_1 and G_2 is the capacity of M_1 and M_2 .				
	H_s is the equivalent inertia of M_1 and M_2 ; G_s is the equivalent capacity of M_1 and M_2 .				
7.	On what basis do you conclude that the given synchronous machine has lost				
	stability?				
	Following a sudden disturbance on a power system rotor speeds, rotor angular				
	differences and power transfer undergo fast changes whose magnitude is dependent on				
	the severity of the disturbance. If these disturbances leads to growing oscillations in the				
	power system even after some period of time say more than 30 seconds then system				
	said are in asynchronous state and it has lost synchronism.				
8.	On what a factor does the critical clearing angle depends.				
	The critical clearing angle depends upon the clearing time, which depends upon auto				
	closing/reclosing and opening of circuit breakers.				
9.	Define steady state stability limit. (Nov 2014), Nov/Dec 2019.				
	It is the maximum power that can be transferred without the system becoming unstable				
	when the system is subjected to small disturbances.				
10.	Mention methods of improving stability limit. (Nov 2016, Nov 2018, Nov 2020 &				
	Dec 2021)				
	The steady state stability limit can be increased by i) Reducing the X, in case of				
	transmission lines by using double circuit lines. ii) Use of series capacitors to get better				
	voltage. iii) Higher excitation systems and quick excitation system are employed.				
	The following methods are employed to increase the transient stability limit of the				
	power system- (i)Increase of system voltages, (ii) use of AVR. (iii) Use of High speed				
	excitation systems. (iv) Reduction in transfer reactance. (v) Use of high speed reclosing				
	breakers.				

E	E3501 - Power System Analysis Department of EEE 2023-2024				
	area mode, control mode and Torsional mode				
17.					
	2014, May 2015, April 2019) or State the significance of critical clearing time.				
	Nov/Dec 2020)				
	<u>Critical clearing angle 'δ_c':</u>				
	The critical clearing angle is defined as the maximum change in the load angle curve				
	before clearing the fault without loss of synchronism. In other words, when the fault				
	occurs in the system the load angle curve begin to increase, and the system becomes				
	unstable. The angle at which the fault becomes clear and the system becomes stable is				
	called critical clearing angle.				
	<u>Critical clearing time 't_c':</u>				
	If any fault occurs in a system, which leads to increase in the load angle, and if it is				
	not cleared before critical clearing time, then the system becomes unstable. The time at				
	which the fault becomes clear before losing the synchronism is nothing but critical				
	clearing time.				
18.	Write swing equation (May 2011)				
	$P_{\rm m}-P_{\rm e}=Md^2\delta/dt^2$				
	Where, P_{m-} Input Mechanical power, P_{e-} output electrical power, M- Angular				
	momentum				
19.	Define transient stability and stability limit. (May 2012, Nov 2017, May 2018)				
	The transient stability is defined as the ability of a power system to return to stable				
	operation when it is subjected to a large disturbance. The maximum power that can be				
	transferred through the system during a very large disturbance without loss of				
	synchronism is called transient stability limit.				
20.	Distinguish between steady state and transient state stability. (Nov 2012)				
	Steady state stability is basically concerned with the ability of the system to restore				
	back to its stable state upon a small disturbance whereas the transient stability is				
	concerned with large disturbances.				

	E3501 - Power System AnalysisDepartment of EEE2023-2024				
21.	What is meant by power angle curve? (May 2013 & Nov 2015)				
	The graphical plot of real power versus power/torque angle is called as power angle				
	curve.				
	$P_e = P_m \sin \delta. \qquad P_m = E_1 E_2 / X.$				
22.	Define Infinite bus in power system. (Nov 2012 & May 2013), April 2019				
	The capacity of a system comprising of many machines is so large, that its voltage &				
	frequency may be taken as constant. The connection or disconnection of a single				
	machine does not change the $ V $ and frequency. Such a constant voltage and frequency				
	system is called as Infinite bus.				
23.	Differentiate between voltage stability and rotor angle stability. (Nov 2013, Nov				
	2016)				
	Voltage stability is the ability of a power system to maintain steady acceptable voltage				
	at all buses in the system under normal operating conditions and after being subject				
	to a disturbance.				
	Rotor angle stability is the ability of interconnected synchronous machines of a power				
	system to remain in synchronism.				
24.	Define swing curve? What is the use of this curve? (Nov 2013, May 2017)				
	A graph of power angle ' δ ' versus time 't' in seconds is called swing curve. The				
	stability of the machine is calculated by using swing curve. This curve is obtained by				
	solving the swing equation of the machine. The critical angle and critical clearing time				
	is calculated by using swing curve.				
25.	Define dynamic stability (May 2014)				
	The dynamic stability study is concerned with the study of nature of oscillations and its				
	decay for small disturbances.				
26.	Find the frequency of oscillation for a synchronizing co-efficient of 0.6, inertia				
	constant H= 4 and system frequency of 50 Hz. (May 2014)				
	Frequency of oscillation = $\sqrt{\frac{c}{M}}$, $M = \frac{H}{\pi f} = \frac{4}{\pi X 50} = 0.0255$ p.u				

EE	C3501 - Power System AnalysisDepartment of EEE	2023-2024			
	Frequency of oscillation = $\sqrt{\frac{0.6}{0.0255}} = 4.85 \frac{r ad}{sec} = \frac{4.85}{2\pi} = 0.7719 Hz$				
27.	A four pole , 60 Hz synchronous generator has a rating of 200 MVA, 0.8 power				
	factor lagging. The moment of inertia of the motor is 45,100kg-m ² . Determine M				
	and H. (Nov 2015)				
	Solution.				
	$Ns = \frac{120f}{p} = 1800rpm,$				
	$n_s = Ns/60 = 30 \text{ rps}, \omega_s = 2\pi n_s = 188.4$				
	Kinetic Energy = $\frac{1}{2}J\omega_s^2 = \frac{1}{2}x45000x188.4^2 = 798627600J = 798.62MJ$				
	Inertia Constant H = $\frac{KE}{G} = \frac{798.62}{200} = 3.99.MJ / MVA$				
	$\mathbf{M} = \frac{GH}{180xf} = \frac{KE}{180xf} = \frac{798.62}{180x60} = 0.073946MJ \text{ sec/ Electrical deg ree}$				
28.	Define Rotor angle stability. (Nov/Dec 2020)				
	Rotor angle stability is the ability of the interconnected synchronous mach	ines running			
	in the power system to remain in the state of synchronism. Two synchronou	is generators			
	running parallel and delivering active power to the load depends on the re-	otor angle of			
	the generator (load sharing between alternators depends on the rotor angle)				